Biologische Laboratorien
Ausstattung und organisatorische Maßnahmen
Impressum

Herausgegeben von:

Berufsgenossenschaft Rohstoffe
und chemische Industrie
Postfach 10 14 80
69004 Heidelberg
Kurfürsten-Anlage 62
69115 Heidelberg
E-Mail: praeventionsprodukte@bgrci.de
Internet: www.bgrci.de

Deutsche Gesetzliche
Unfallversicherung e.V. (DGUV)
Glinkastraße 40
10117 Berlin
E-Mail: info@dguv.de
Internet: www.dguv.de

Sachgebiet „Biologische Arbeitsstoffe“
Fachbereich „Rohstoffe und chemische Industrie“ der DGUV

Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher
Genehmigung der Berufsgenossenschaft Rohstoffe und chemische Industrie
Inhalt

1 Anwendungsbereich ...7

2 Begriffsbestimmungen ...8

3 Rechtsgrundlagen ...12

4 Gefährdungsbeurteilung ..16
 4.1 Organismenbezogene Informationen ..17
 4.2 Tätigkeitsbezogene Informationen ..17
 4.3 Entscheidung über die Art der Tätigkeit ...17
 4.4 Schutzstufenzuordnung bei gezielten Tätigkeiten ...17
 4.5 Schutzstufenzuordnung bei nicht gezielten Tätigkeiten ...18
 4.6 Festlegung der Schutzmaßnahmen ..18
 4.7 Dokumentation ...18
 4.8 Betriebsanweisung und Unterweisung ...19
 4.9 Substitutionsgebot und biologische Sicherheitsmaßnahmen ..20
 4.10 Biosecurity in mikrobiologischen und biotechnischen Laboratorien ...20

5 Laboratoriumseinrichtung und -ausstattung ...22
 5.1 Allgemeines ...22
 5.2 Raumluftechnische Anlagen ...22
 5.3 Abwasserbehandlungsanlagen ..24
 5.4 Mikrobiologische Sicherheitswerkbänke (MSW) ..25
 5.4.1 Allgemeines ...25
 5.4.2 Betrieb und Prüfung ..26
 5.4.3 Geräte und Einbauten innerhalb einer MSW ..27
 5.5 Laborabzüge ...27
 5.6 Zentrifugen ...27
 5.7 Homogenisatoren und Zellaufschlussgeräte ..30
 5.8 Zellsortierer ..30
 5.9 Laborfermenter (Bioreaktoren) ..31
 5.10 Laborroboter ...33
 5.11.1 Allgemeines ...34
 5.11.2 Beschaffenheit: Gerä tetypen, Bau und Ausrüstung ...34
 5.11.3 Betrieb: Aufstellung, Inbetriebnahme und Prüfungen ...35
 5.11.4 Organisatorische Maßnahmen: Arbeitsverhalten, Desinfektion und Reinigung38
 5.12 Erstickend wirkende Gase ..39
 5.12.1 Flüssigstickstoff ...39
 5.12.2 Kohlendioxid ..41
 5.13 Sonderklimaräume ...42
 5.14 Mikrotom ...44
 5.15 Mikroskop ...44
 5.16 Arbeitsmittel und -verfahren mit besonderem Gefährdungspotenzial ...45

6 Persönliche Schutzausrüstungen einschließlich Schutzkleidung ...46
 7.1 Schutzstufe 1 ...50
 7.1.1 Allgemeines ...50
Inhalt

7.1.2 Bauliche und technische Anforderungen ... 51
7.1.3 Organisatorische Maßnahmen .. 52
7.1.4 Persönliche Schutzausrüstungen .. 54

7.2 Schutzstufe 2 ... 54
7.2.1 Allgemeines ... 54
7.2.2 Bauliche und technische Anforderungen ... 55
7.2.3 Organisatorische Maßnahmen .. 57
7.2.4 Persönliche Schutzausrüstungen .. 60
7.2.5 Notfall ... 60

7.3 Schutzstufe 3 ... 60
7.3.1 Allgemeines ... 60
7.3.2 Tätigkeiten mit Biostoffen der Risikogruppe 3 (**) .. 61
7.3.3 Tätigkeiten mit Biostoffen der Risikogruppe 3 .. 62
7.4 Schutzstufe 4 ... 69
7.4.1 Allgemeines ... 69
7.4.2 Bauliche und technische Anforderungen ... 69
7.4.3 Organisatorische Maßnahmen .. 71
7.4.4 Persönliche Schutzausrüstungen .. 73
7.4.5 Notfall ... 73

7.5 Inbetriebnahme und Überprüfung der Funktionalität .. 73

8 Prüfungen in Laboratorien ... 75
8.1 Allgemeines .. 75
8.2 Inbetriebnahmeprüfungen .. 75
8.3 Zur Prüfung befähigte Personen .. 76
8.4 Wiederkehrende Prüfungen ... 77
8.5 Dokumentation .. 78

9 Hygiene, Hygieneplan ... 79
9.1 Allgemeines .. 79
9.2 Technische Maßnahmen .. 79
9.3 Organisatorische Maßnahmen .. 79
9.4 Hygieneplan .. 79

10 Sterilisation, Desinfektion, Dekontamination ... 81
10.1 Allgemeines .. 81
10.2 Sterilisation und Sterilisationsverfahren .. 81
10.2.1 Sterilisation mit Dampf ... 82
10.2.2 Sterilisation durch trockene Hitze/Heißluft .. 82
10.2.3 Sterilisation mit Gasen .. 82
10.2.4 Sterilisation durch Filtration .. 83
10.2.5 Sterilisation durch Strahlung ... 84

10.3 Desinfektion und Desinfektionsverfahren ... 84
10.3.1 Physikalische Desinfektionsverfahren ... 85
10.3.2 Chemische Desinfektionsverfahren ... 85

10.4 Raumdekontaminationsverfahren ... 87
10.4.1 Formaldehydverdampfung ... 87
10.4.2 Begasung mit Wasserstoffperoxid \(\text{H}_2\text{O}_2 \) ... 87
10.4.3 Trocken vernebelte Peressigsäure \("\text{Dry Fog}\) .. 88
10.4.4 Begasung mit Chlorsäure \(\text{Cl}_2 \) ... 88

10.5 Wichtige Wirkstoffgruppen ... 88
10.6 Schutzmaßnahmen beim Umgang mit chemischen Desinfektionsmitteln 90
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Transport und Versand</td>
</tr>
<tr>
<td>12</td>
<td>Gefahrstoffe in biologischen Laboratorien</td>
</tr>
<tr>
<td>13</td>
<td>Brandschutz</td>
</tr>
<tr>
<td>13.1</td>
<td>Baulicher Brandschutz</td>
</tr>
<tr>
<td>13.2</td>
<td>Technischer Brandschutz</td>
</tr>
<tr>
<td>13.3</td>
<td>Organisatorischer Brandschutz</td>
</tr>
<tr>
<td>14</td>
<td>Maßnahmen in Notfällen und bei Störungen</td>
</tr>
<tr>
<td>14.1</td>
<td>Allgemeines</td>
</tr>
<tr>
<td>14.2</td>
<td>Verhalten im Gefahrenfall in den Schutzstufen 2 und 3</td>
</tr>
<tr>
<td>14.3</td>
<td>Verhalten im Gefahrenfall in der Schutzstufe 4</td>
</tr>
<tr>
<td>14.4</td>
<td>Erste-Hilfe-Maßnahmen</td>
</tr>
<tr>
<td>14.5</td>
<td>Störungen in technischen Einrichtungen</td>
</tr>
<tr>
<td>15</td>
<td>Arbeitsmedizinische Vorsorge</td>
</tr>
<tr>
<td>15.1</td>
<td>Pflichtvorsorge</td>
</tr>
<tr>
<td>15.2</td>
<td>Angebotsvorsorge</td>
</tr>
<tr>
<td>15.3</td>
<td>Wunschvorsorge</td>
</tr>
<tr>
<td>15.4</td>
<td>Impfungen</td>
</tr>
<tr>
<td>15.5</td>
<td>Dokumentation</td>
</tr>
<tr>
<td>16</td>
<td>Beschäftigungsbeschränkungen</td>
</tr>
<tr>
<td>17</td>
<td>Qualifikationsanforderungen an Verantwortliche und Beschäftigte</td>
</tr>
<tr>
<td>17.1</td>
<td>Anforderungen nach BioStoffV</td>
</tr>
<tr>
<td>17.2</td>
<td>Anforderungen nach GenTSV</td>
</tr>
<tr>
<td>17.3</td>
<td>Anforderungen nach IfSG/TierSeuchErV</td>
</tr>
<tr>
<td>17.4</td>
<td>Anforderungen nach GefStoffV</td>
</tr>
<tr>
<td>Anhang 1:</td>
<td>Grundregeln guter mikrobiologischer Technik (GMT)</td>
</tr>
<tr>
<td>Anhang 2:</td>
<td>Vorlage für eine Gefährdungsbeurteilung nach Biostoffverordnung für Laboratorien</td>
</tr>
<tr>
<td>Anhang 3:</td>
<td>Musterbetriebsanweisung Stickstoff (tiefkalt, flüssig)</td>
</tr>
<tr>
<td>Anhang 4:</td>
<td>Mustervorlagen für Freigabescheine</td>
</tr>
<tr>
<td>Anhang 5:</td>
<td>Checkliste zur Ermittlung der Prüffristen für wiederkehrende Prüfungen von Labor- und Analysengeräten</td>
</tr>
<tr>
<td>Anhang 6:</td>
<td>Musterhygieneplan</td>
</tr>
<tr>
<td>Anhang 7:</td>
<td>Musterplan für Hautschutz und Händedesinfektion</td>
</tr>
<tr>
<td>Anhang 8:</td>
<td>Hygieneschulung (zu § 14 Abs. 1 Nr. 2 a Biostoffverordnung)</td>
</tr>
<tr>
<td>Anhang 9:</td>
<td>Musterbetriebsanweisung für Biostoffe</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td></td>
</tr>
<tr>
<td>Bildnachweis</td>
<td></td>
</tr>
</tbody>
</table>
Die vorliegende Schrift konzentriert sich auf wesentliche Punkte einzelner Vorschriften und Regeln. Sie nennt deswegen nicht alle im Einzelfall erforderlichen Maßnahmen. Seit Erscheinen der Schrift können sich darüber hinaus der Stand der Technik und die Rechtsgrundlagen geändert haben.

Diese Schrift wurde sorgfältig erstellt. Dies befreit nicht von der Pflicht und Verantwortung, die Angaben auf Vollständigkeit, Aktualität und Richtigkeit selbst zu überprüfen.

1 Anwendungsbereich

Die Schrift informiert über
- staatliche Arbeitsschutz- und Rechtsvorschriften (Gesetze und Verordnungen, Technische Regeln),
- Regeln, Informationen und Merkblätter der Unfallversicherungsträger,
- technische Spezifikationen, insbesondere (harmonisierte) Normen und
- Erfahrungen aus der Praxis und aus der Präventionsarbeit der Unfallversicherungsträger.

Der Anwendungsbereich dieser Schrift bezieht sich vorrangig auf die TRBA 100\(^1\). Vereinzelt werden Anforderungen aus der Biostoffverordnung (BioStoffV), der Gentechnik-Sicherheitsverordnung (GenTSV), der Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedVV) und des Infektionsschutzgesetzes (IfSG) konkretisiert.

Die Schrift gibt den Stand der Technik wieder und erläutert die Schutzmaßnahmen in den jeweiligen Schutzstufen. Sie veranschaulicht sicherheitstechnische Lösungen, von denen dann abgewichen werden kann, wenn gleichwertige Maßnahmen getroffen werden, es sei denn, ein gesetzliches Regelwerk schreibt diese Maßnahmen verbindlich vor.

Allgemeine laborspezifische Gefährdungen und zugehörige Schutzmaßnahmen, insbesondere im Hinblick auf Gefahrstoffe, sind in der DGUV Information 213-850 „Sicheres Arbeiten in Laboratorien – Grundlagen und Handlungshilfen“ (Labornrichtlinien) enthalten. Für Tätigkeiten mit Versuchstieren oder Pflanzen wird auf andere Regelwerke verwiesen (siehe Kapitel 3 „Rechtsgrundlagen“).

\(^1\) TRBA 100 „Schutzmaßnahmen für Tätigkeiten mit biologischen Arbeitsstoffen in Laboratorien“
2 Begriffsbestimmungen

Zur Prüfung befähigte Person
Eine zur Prüfung befähigte Person ist eine Person, die durch ihre Berufsausbildung, ihre Berufserfahrung und ihre zeitnahe berufliche Tätigkeit über die erforderlichen Fachkenntnisse zur Prüfung bestimmter Arbeitsmittel verfügt.

Betreiber (einer gentechnischen Anlage)
Juristische oder natürliche Person oder eine nichtrechtsfähige Personenvereinigung, die unter ihrem Namen eine gentechnische Anlage errichtet oder betreibt, gentechnische Arbeiten oder Freisetzungen durchführt oder Produkte, die gentechnische Organismen enthalten oder aus solchen bestehen, erstmalig in den Verkehr bringt.

Biologische Arbeitsstoffe/Biostoffe
Biologische Arbeitsstoffe/Biostoffe (beide Begriffe bedeutungsgleich)
› Mikroorganismen, Zellkulturen und Endoparasiten einschließlich ihrer gentechnisch veränderten Formen,
› mit Transmissibler Spongiformer Enzephalopathie (TSE) assoziierte Agenzien, die den Menschen durch Infektionen, übertragbare Krankheiten, Toxinbildung, sensibilisierende oder sonstige, die Gesundheit schädigende Wirkungen gefährden können.

Den Biostoffen gleichgestellt sind
› Ektoparasiten, die beim Menschen eigenständige Erkrankungen verursachen oder sensibilisierende oder toxische Wirkungen hervorrufen können,
› technisch hergestellte biologische Einheiten mit neuen Eigenschaften, die den Menschen in gleicher Weise gefährden können wie Biostoffe.

Tierseuchenerreger sind im Sinne dieser Schrift ebenfalls den Biostoffen gleichgestellt, auch wenn sie für den Menschen keine schädigende Wirkung besitzen.

Biologische Laboratorien

Zu den Laboratorien gehören auch Multifunktionsräume und technische Nebenräume, wie Bruträume, Zentrifug enräume, Kühl- oder Tiefkühlräume, Lagerräume sowie Räume zur Inaktivierung von Biostoffen.

Biologische Sicherheitsmaßnahme
Nach Gentechnik-Sicherheitsverordnung bestehen biologische Sicherheitsmaßnahmen in der Verwendung von anerkannten Vektoren und Empfängerorganismen mit bestimmten gefahrdmindernden Eigenschaften.

Dekontamination
Dekontamination ist die Reduktion der Konzentration von Biostoffen auf ein gesundheitlich unbedenkliches Maß.

Desinfektion
Die gezielte Reduktion der Anzahl vermehrungsfähiger oder infektiöser Organismen (Biostoffe) in Materialien, Medien oder auf Oberflächen mit physikalischen bzw. chemischen Verfahren in dem Maße, dass von ihnen keine schädlichen Auswirkungen und insbesondere keine Infektionsgefahren ausgehen.

Fachkunde
Nach Biostoffverordnung bzw. TRBA 2002 erfordert z. B. die Durchführung der Gefährdungsbeurteilung eine Fachkunde. Die erforderlichen Kenntnisse sind durch eine geeignete Berufsausbildung und eine zeitnahe einschlägige beruf-

2 TRBA 200 „Anforderungen an die Fachkunde nach Biostoffverordnung“
liche Tätigkeit nachzuweisen. Hinweise zu erforderlichen Kompetenzen im Arbeitsschutz sind schutzstufenabhängig der TRBA 200 zu entnehmen. Darüber hinaus wird bei hohen Schutzstufen auch die Fachkunde bei Beschäftigten sowie die Benennung einer fachkundigen Person gefordert.

Geeignete Maßnahmen

Maßnahmen sind im Sinne dieser Schrift geeignet, wenn sie den Mindestanforderungen der betreffenden Schutzstufe entsprechen; auch über die Mindestanforderungen hinausgehende Maßnahmen (z. B. Maßnahmen einer höheren Schutzstufe) sind selbstverständlich situationsbezogen geeignet.

Gentechnische Anlage

Eine Einrichtung, in der gentechnische Arbeiten im geschlossenen System durchgeführt werden und bei der spezifische Einschließungsmaßnahmen angewendet werden, um den Kontakt der verwendeten Organismen mit Menschen und der Umwelt zu begrenzen und ein dem Gefährdungspotenzial angemessenes Sicherheitsniveau zu gewährleisten.

Gentechnische Arbeiten

a) Die Erzeugung gentechnisch veränderter Mikroorganismen.

b) Die Vermehrung, Lagerung, Zerstörung oder Entsorgung sowie der innerbetriebliche Transport gentechnisch veränderter Organismen sowie deren Verwendung in anderer Weise, soweit noch keine Genehmigung für die Freisetzung oder das Inverkehrbringen zum Zweck des späteren Ausbringens in die Umwelt erteilt wurde.

Gentechnisch veränderter Organismus (GVO)

Ein Organismus, mit Ausnahme des Menschen, dessen genetisches Material in einer Weise verändert worden ist, wie sie unter natürlichen Bedingungen durch Kreuzen oder natürliche Rekombination nicht vorkommt. Ein gentechnisch veränderter Organismus ist auch ein Organismus, der durch Kreuzung oder natürliche Rekombination zwischen gentechnisch veränderten Organismen oder mit einem oder mehreren gentechnisch veränderten Organismen oder durch andere Arten der Vermehrung eines gentechnisch veränderten Organismus entstanden ist, sofern das genetische Material des Organismus Eigenschaften aufweist, die auf gentechnische Arbeiten zurückzuführen sind.

Gezielte/nicht gezielte Tätigkeiten

In der Biostoffverordnung werden gezielte und nicht gezielte Tätigkeiten unterschieden. Gezielte Tätigkeiten liegen vor, wenn

- Biostoffe mindestens der Spezies nach bekannt sind,
- die Tätigkeiten auf einen oder mehrere Biostoffe ausgerichtet sind und
- die Exposition der Beschäftigten im Normalbetrieb hinreichend bekannt oder abschätzbar ist.

Nicht gezielte Tätigkeiten liegen vor, wenn mindestens eine der oben genannten Voraussetzungen nicht gegeben ist.

HEPA-Filter (Hochleistungsschwebstofffilter)

Filter, die effektiv Partikel und auch Bioaerosole zurückhalten.

(HEPA-Filter = High Efficiency Particulate Air Filter oder HOSCH-Filter = Hochleistungsschwebstofffilter)

Hygiene, Hygienemaßnahmen

Beinhaltet vorbeugende Maßnahmen zur Gesunderhaltung des Menschen, d. h. in Verbindung mit dem Arbeitsschutz die Verhütung der Verschleppung von Krankheitserregern sowie der Infizierung und Erkrankung der Beschäftigten.

Inaktivierung

Nach TRBA 100\(^3\) ist die Inaktivierung die irreversible Zerstörung der Vermehrungs- und Infektionsfähigkeit von Biostoffen.

Nach Gentechnik-Sicherheitsverordnung ist Inaktivierung die Zerstörung der Vermehrungs- und Infektionsfähigkeit von Organismen einschließlich ihrer Fähigkeit, genetisches Material zu übertragen, und Zerstörung ihrer toxischen Wirkung sowie Zerstörung anderer gefährlicher Wirkungen von Organismen.

\(^3\) TRBA 100 „Schutzmaßnahmen für Tätigkeiten mit biologischen Arbeitsstoffen in Laboratorien“
Infektion
Aktives oder passives Eindringen von Krankheitserregern in einen Wirt, wo sie haften bleiben, sich vermehren und eine Abwehr- und/oder Schädigungsreaktion hervorrufen.

Infekutionsfähigkeit
Grad der Fähigkeit eines Krankheitserregers, sich von Wirt zu Wirt übertragen zu lassen, am neuen Wirt zu haften, sich auf oder in ihm zu vermehren und gegebenenfalls in seine Gewebe einzudringen.

Krankheitserreger
Ein vermehrungsfähiges Agens (Virus, Bakterium, Pilz, Parasit) oder ein sonstiges biologisches transmissibles Agens, das beim Menschen eine Infektion oder übertragbare Krankheit verursachen kann.

Kontamination

Mikrobiologische Sicherheitswerkbank (MSW)
Geräte mit Ventilator und Filtration der Luft zum Schutz des Nutzers bzw. der Nutzerin und der Umwelt vor Bioaerosolen, die bei Tätigkeiten mit Biostoffen entstehen können.

Mikroorganismen
Nach Biostoffverordnung sind Mikroorganismen alle zellulären und nicht zellulären mikrobiologischen Einheiten, die zur Vermehrung oder zur Weitergabe von genetischem Material fähig sind.

Nach dem Gentechnikgesetz sind Mikroorganismen Viren, Viroide, Bakterien, Pilze, mikroskopisch kleine ein- oder mehrzellige Algen, Flechten, andere eukaryontische Einzeller oder mikroskopisch-kleine tierische Mehrzeller sowie tierische und pflanzliche Zellkulturen.

Raumlufttechnische Anlage (RLT-Anlage)
Als raumlufttechnische Anlagen werden ventilatorgestützte Anlagen bezeichnet, mit denen Raumluft zu- oder abgeführt wird. Die Luft wird in der Regel thermodynamisch (z. B. Erhitzen, Kühlen, Be- und Entfeuchten) und mechanisch (Filtration) durch eine oder mehrere Behandlungsstufen aufbereitet.

Sachkunde/Sachkundige Person

Schutzmaßnahmen/Sicherheitsmaßnahmen

Schutzstufe
Eine Schutzstufe umfasst die technischen, organisatorischen und persönlichen Sicherheitsmaßnahmen, die für Tätigkeiten mit Biostoffen entsprechend ihrer Gefährdung (z. B. Risikogruppen-Zugehörigkeit) zum Schutz der Beschäftigten festgelegt oder empfohlen sind.
Sicherheitsstufen
Gruppen gentechnischer Arbeiten nach ihrem Gefährdungspotenzial gemäß Gentechnikrecht.

Sterilisation
Sterilisation ist die Abtötung aller vermehrungsfähigen oder infektiösen Mikroorganismen einschließlich ihrer Dauerformen, sowie die Inaktivierung von Viren durch physikalische oder chemische Verfahren.

Tätigkeiten

Zellkulturen
In-vitro-Haltung oder -Vermehrung von aus vielzelligen Organismen isolierten vereinzelten Zellen in Nährmedium außerhalb des Spenderorganismus. Zu den Zellkulturen zählen auch die aus einer oder wenigen Zellen (embryonale, adulte oder induzierte pluripotente Stammzellen) hervorgegangenen Organoide.
3 Rechtsgrundlagen

Die im Folgenden aufgeführten Rechtsgrundlagen präzisieren, wie die Arbeitsstätte, die Betriebsanlagen und die technischen Arbeitsmittel bei den einzelnen Schutz- und Sicherheitsstufen beschaffen, eingerichtet und betrieben werden müssen, damit sie den gesicherten sicherheitstechnischen, arbeitsmedizinischen, hygienischen und sonstigen arbeitswissenschaftlichen Erkenntnissen entsprechen, die zum Schutz der Beschäftigten zu beachten und zur menschengerechten Gestaltung der Arbeit erforderlich sind. In dieser Schrift steht der Schutz der Beschäftigten, der Bevölkerung sowie der Umwelt im Vordergrund. Die rechtlichen Bestimmungen sind übersichtsweise in der Tabelle 3 aufgeführt.

Tätigkeiten mit natürlichen Mikroorganismen

Arbeiten mit gentechnisch veränderten Mikroorganismen

Darüber hinaus müssen andere öffentlich-rechtliche Vorschriften umgesetzt und die Belange des Arbeitsschutzes für die Einrichtung und den Betrieb der Laboratorien/gentechnischen Anlagen gewährleistet werden. Bei Arbeiten mit humanpathogenen Erregern sind das Infektionsschutzgesetz (IfSG), bei Arbeiten mit Tierseuchenerregern das Tiergesundheitsgesetz (TierGesG) und bei Arbeiten mit pflanzenpathogenen Mikroorganismen das Pflanzenschutzgesetz (PflSchG) sowie die jeweils nachgeordneten Rechtsnormen maßgebend.

<table>
<thead>
<tr>
<th>Schutzstufe</th>
<th>gezielte Tätigkeiten</th>
<th>nicht gezielte Tätigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Anzeige</td>
<td>–</td>
</tr>
<tr>
<td>3, wenn nur Tätigkeiten mit Biostoffen der RG 3** durchgeführt werden</td>
<td>Anzeige</td>
<td>Anzeige</td>
</tr>
<tr>
<td>3 und 4</td>
<td>Erlaubnis</td>
<td>Erlaubnis</td>
</tr>
</tbody>
</table>

Fristen: siehe §§ 15 und 16 Biostoffverordnung

Erlaubnis: Bescheid erforderlich vor Arbeitsbeginn

Tabelle 1: Anzeige- und Erlaubnispflichten bei Tätigkeiten nach §§ 15 und 16 Biostoffverordnung
Für die Errichtung und den Betrieb eines Laboratoriums/einer gentechnischen Anlage muss zunächst geklärt werden, ob das Vorhaben anzeige-, erlaubnis- oder genehmigungspflichtig ist.

Um dies zu ermitteln, ist es ratsam, dass die Unternehmensleitung die jeweils zuständige Behörde rechtzeitig vorab kontaktiert. Die Zuständigkeit der Behörden kann in den Bundesländern unterschiedlich geregelt sein, z. B. Landesamt für Arbeits- schutz, Gewerbeaufsichtsamt, Landesumweltamt, Regierungspräsidium, örtliches Gesundheits- und Veterinäramt, Pflanzen- schutzamt.

Bei Einhaltung der Technischen Regeln für Biologische Arbeitsstoffe (TRBA) sowie der Empfehlungen des Ausschusses für biologische Arbeitssstoffe (ABAS) bzw. der Anhänge der Gentechnik-Sicherheitsverordnung (GenTSV) können Verant- wortliche davon ausgehen und darauf vertrauen, dass die getroffenen Schutz- und Sicherheitsmaßnahmen die rechtlichen Vorgaben erfüllen (Vermutungswirkung). Beschrieben sind Mindestanforderungen, über die durch fachkundiges Ermessen unter Berücksichtigung von Zweck- und Verhältnismäßigkeit hinausgegangen werden kann.

Für den Fall, dass vom Stand der Technik abgewichen werden muss oder soll, müssen die Verantwortlichen den Nachweis erbringen, dass die Gleichwertigkeit der Schutzmaßnahmen gegeben ist (Umkehrung der Beweislast).

Bei der Handhabung von Biostoffen in Laboratorien sind im Wesentlichen die in Tabelle 3 genannten Vorschriften zu be- achten. In der Tabelle wird differenziert, ob die genannten Vorschriften Aussagen zu Beschaffenheit, Bau und Ausrüstung von Laboratorien (Spalte 2) und/oder zu deren Organisation und Betrieb (Spalte 3) machen.

<table>
<thead>
<tr>
<th>Gesetzliche bzw. untergesetzliche Regelungen (siehe Literaturverzeichnis Abschnitte 1 und 2)</th>
<th>Beschaffenheit, Bau, Ausrüstung</th>
<th>Organisation, Betrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsschutzgesetz</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Mutterschutzgesetz</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Biostoffverordnung</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>TRBA 100 „Schutzmaßnahmen für Tätigkeiten mit biologischen Arbeitsstoffen in Laboratorien“</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>TRBA 400 „Handlungsanleitung zur Gefährdungsbeurteilung und für die Unterrichtung der Beschäftigten bei Tätigkeiten mit biologischen Arbeitsstoffen“</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>TRBA 500 „Grundlegende Maßnahmen bei Tätigkeiten mit biologischen Arbeitsstoffen“</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Empfehlungen und Stellungnahmen des ABAS</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>Gentechnikgesetz (Sicherheitsstufen)</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>Gentechnik-Sicherheitsverordnung</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>Allgemeine Stellungnahmen der ZKBS</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>Infektionsschutzgesetz (z. B. § 44, § 49) bei Tätigkeiten mit Krankheitserregern</td>
<td>ab S 2</td>
<td></td>
</tr>
<tr>
<td>Tiergesundheitsgesetz mit Tierseuchenerreger-Verordnung bei Handhabung von Tierseuchenerregern</td>
<td>ab S 2</td>
<td></td>
</tr>
<tr>
<td>Tierseuchenerreger-Einfuhrverordnung</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>Pflanzenschutzgesetz</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Chemikaliengesetz mit Gefahrstoffverordnung</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>TRGS 522 „Raumdesinfektion mit Formaldehyd“</td>
<td>ab S 3</td>
<td></td>
</tr>
<tr>
<td>TRGS 526 „Laboratorien“ bzw. DGUV Information 213-850 „Sicheres Arbeiten in Laboratorien“</td>
<td>ab S 1</td>
<td>ab S 1</td>
</tr>
<tr>
<td>TRBA/TRGS 406 „Sensibilisierende Stoffe für die Atemwege“</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Betriebssicherheitsverordnung</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Produkt sicherheitsgesetz bei Benutzung von Geräten im Eigenbau ohne Zulassung</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Arzneimittelgesetz</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Strahlenschutzverordnung</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Kriegswaffenkontrollgesetz (Ausnahme: Forschung)</td>
<td>ab S 2</td>
<td></td>
</tr>
<tr>
<td>Verordnung (EU) Nr. 428/2009 Annex I (Dual-Use)</td>
<td>ab S 2</td>
<td></td>
</tr>
<tr>
<td>Musterbauordnung* bzw. Landesbauordnungen Brandschutz</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Kommunale Abwasser- und Abfallvorschriften</td>
<td>ab S 1</td>
<td></td>
</tr>
<tr>
<td>Tierische Nebenprodukte-Beseitigungsgesetz</td>
<td>ab S 1</td>
<td></td>
</tr>
</tbody>
</table>

S Schutz- bzw. Sicherheitstufe
a Bei sensibilisierenden und toxischen Wirkungen sind zusätzliche Maßnahmen erforderlich.
b Fallweise in einer niedrigeren Schutzstufe, z. B. aus Produktschutzgründen.

Tabelle 3: Übersicht über wesentliche gesetzliche und untergesetzliche Bestimmungen zu Sicherheit und Gesundheitsschutz in biologischen Laboratorien

4 Siehe dazu auch www.bauministerkonferenz.de/Dokumente/42318979.de
<table>
<thead>
<tr>
<th>Thema</th>
<th>Aufbewahrungsfrist</th>
<th>Rechtsgrundlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verzeichnis über die Beschäftigten (bei Tätigkeiten der Schutzstufen 3 oder 4)</td>
<td>10 Jahre nach Beendigung der Tätigkeiten</td>
<td>§ 7 Abs. 3 BioStoffV</td>
</tr>
<tr>
<td>Expositions-Verzeichnis über die Beschäftigten, die Tätigkeiten mit kreberzeugenden oder keimzell-mutagenen Gefahrstoffen der Kategorie 1A oder 1B ausüben</td>
<td>40 Jahre nach Beendigung der Exposition</td>
<td>§ 14 Abs. 3 GefStoffV</td>
</tr>
<tr>
<td>Aufzeichnungen über gentechnische Arbeiten: Sicherheitsstufe 1</td>
<td>10 Jahre nach Beendigung der Arbeiten</td>
<td>§ 4 GenTAufzV</td>
</tr>
<tr>
<td>Aufzeichnungen über gentechnische Arbeiten: Sicherheitsstufe 2 bis 4; Freisetzungen</td>
<td>30 Jahre nach Beendigung der Arbeiten bzw. der Freisetzung</td>
<td>§ 4 GenTAufzV</td>
</tr>
<tr>
<td>Dokumentation von Unterweisungen</td>
<td>2 Jahre (empfohlen)</td>
<td>Kapitel 11 der DGUV Information 211-005 „Unterweisung – Bestandteil des betrieblichen Arbeitsschutzes“</td>
</tr>
<tr>
<td>Dokumentation von Erste-Hilfe-Leistungen</td>
<td>5 Jahre</td>
<td>§ 24 Abs. 6 DGUV Vorschrift 1 „Grundsätze der Prävention“</td>
</tr>
<tr>
<td>Prüfung von Arbeitsmitteln</td>
<td>Mindestens bis zur nächsten Prüfung (auch elektronisch möglich)</td>
<td>§ 14 Abs. 7 BetrSichV</td>
</tr>
<tr>
<td>Prüfung von überwachungsbedürftigen Anlagen</td>
<td>Während der gesamten Verwendungsdauer am Betriebsort der überwachungsbedürftigen Anlage (auch elektronisch möglich)</td>
<td>§ 17 BetrSichV</td>
</tr>
</tbody>
</table>

Tabelle 4: Aufbewahrungsfristen von Dokumentationen und Aufzeichnungen
4 Gefährdungsbeurteilung

Nach Biostoffverordnung ist eine Gefährdungsbeurteilung vor Aufnahme der Tätigkeiten mit Biostoffen zwingend durchzuführen und zu dokumentieren. Bei Tätigkeiten mit gentechnisch veränderten Biostoffen ersetzen in der Regel die Risikobewertung und Sicherheitseinstufung nach Gentechnikrecht die stoffbezogene Gefährdungsbeurteilung nach Biostoffverordnung.

Die Gefährdungsbeurteilung nach § 5 Arbeitsschutzgesetz dient als Grundlage für die Festlegung geeigneter Schutzmaßnahmen, die das Risiko für die Beschäftigten minimieren. Die Unternehmensleitung ist verantwortlich für die fachkundige Durchführung der Gefährdungsbeurteilung und deren ordnungsgemäße Dokumentation nach § 6 Arbeitsschutzgesetz. Die Anforderungen an die Fachkunde sind abhängig von der Tätigkeit und der Höhe der Gefährdung. Verfügt die Unternehmensleitung nicht selbst über die erforderlichen Kenntnisse, hat sie sich fachkundig beraten zu lassen (siehe auch Kapitel 17 „Qualifikationsanforderungen an Verantwortliche und Beschäftigte“).

Für die Gefährdungsbeurteilung sind Informationen über die verwendeten oder vorkommenden Biostoffe erforderlich (organismenbezogene Informationen) sowie über die Tätigkeit und die Expositionsbedingungen der Beschäftigten am Arbeitsplatz (tätigkeitsbezogene Informationen). Die Unternehmensleitung hat diese Informationen zu ermitteln und bei der Gefährdungsbeurteilung zu berücksichtigen. Für Tätigkeiten mit Biostoffen in Laboratorien liegen betriebsübergreifende Informationsquellen vor (z. B. TRBA, Schriften der Unfallversicherungsträger).

Zu den gemäß § 5 Arbeitsschutzgesetz zu berücksichtigenden Gefährdungsfaktoren gehören auch die psychischen Belastungen am Arbeitsplatz. Diese ergeben sich primär im Zusammenhang mit der Arbeitsorganisation, der Arbeitsumgebung einschließlich Arbeitsmittel, der Arbeitsaufgabe und den beruflichen sozialen Beziehungen. Hinsichtlich der Folgen sind Gefährdungen durch akut wirkende psychische Belastungen einerseits sowie durch Belastungen, die über eine längere Zeit wirken, andererseits zu berücksichtigen. Die erstgenannten Gefährdungen können z. B. zu Ermüdung oder herabgesetzter Aufmerksamkeit führen, woraus ein erhöhtes Unfallrisiko resultiert (z. B. durch vernachlässigte Nutzung von persönlichen Schutzausrüstungen, Nichteinhaltung vorgegebener Abläufe, Nadelstichverletzungen). Psychische Belastungen, die über längere Zeit einwirken, können zu einer veränderten Immunlage führen, was sich wiederum in einer erhöhten Infektionsgefährdung oder einer erhöhten Empfindlichkeit gegenüber Allergenen niederschlagen kann.

Hintergrundinformationen zu psychischen Belastungen und zu ihren Wirkungen auf die menschliche Gesundheit, Hinweise zur Ermittlung, sowie eine Anleitung zur angemessenen Berücksichtigung in der Gefährdungsbeurteilung finden sich in der TRBA 4007 unter Nr. 6 und insbesondere in deren Anlage 6.

Die Gefährdungsbeurteilung ist bei wesentlichen Änderungen der Tätigkeiten, bei neuen Informationen zum Gefährdungspotenzial der verwendeten Biostoffe sowie bei unwirksamen Schutzmaßnahmen unverzüglich zu aktualisieren. Ansonsten ist sie mindestens jedes zweite Jahr zu überprüfen und bei Bedarf zu aktualisieren.

5 Siehe Literaturverzeichnis Abschnitte 2 und 3
6 Siehe § 5 Abs. 3 ArbSchG
7 TRBA 400 „Handlungsanleitung zur Gefährdungsbeurteilung und für die Unterrichtung der Beschäftigten bei Tätigkeiten mit biologischen Arbeitsstoffen“
4.1 Organismenbezogene Informationen

4.2 Tätigkeitsbezogene Informationen

4.3 Entscheidung über die Art der Tätigkeit

Ausgehend von den ermittelten Informationen ist zu entscheiden, ob gezielter oder nicht gezielter Tätigkeiten durchgeführt werden (siehe auch Kapitel 2 „Begriffsbestimmungen“). Diese sind nach § 5 der Biostoffverordnung einer Schutzstufe zuzuordnen.

In verschiedenen Arbeitsbereichen, wie z. B. der Diagnostik, kann es zum Übergang von nicht gezielten zu gezielten Tätigkeiten kommen. Dies kann unter Umständen auch zu einer Änderung der Schutzstufenzuordnung und der entsprechenden Schutzziele führen.

4.4 Schutzstufenzuordnung bei gezielten Tätigkeiten

Basierend auf der Risikogruppe des Biostoffs erfolgt die Zuordnung in die entsprechende Schutzstufe. Falls mehrere Biostoffe vorliegen, ist die Risikogruppe des Biostoffs mit dem höchsten Gefährdungsgrad ausschlaggebend. Möglicherweise vorhandene toxische, sensibilisierende und sonstige, die Gesundheit schädigende Wirkungen haben keinen Einfluss auf die Zuordnung zu einer Schutzstufe, erfordern aber gegebenenfalls die Festlegung weiterer Schutzmaßnahmen. Im Falle von gentechnischen Arbeiten erfolgen die Risikobewertung und die Sicherheitseinstufung aufgrund der Bewertung aller für die Sicherheit bedeutsamen Eigenschaften von Spender, Empfänger, Vektor und dem gentechnisch veränderten Mikroorganismus.

8 Siehe Literaturverzeichnis Abschnitt 2
9 Siehe Literaturverzeichnis Abschnitt 6
4.5 Schutzstufenzuordnung bei nicht gezielten Tätigkeiten

Ist mit einer Exposition gegenüber Biostoffen unterschiedlicher Risikogruppen zu rechnen, so ist die Wahrscheinlichkeit des Auftretens dieser Biostoffe für die Gefährdungsbeurteilung entscheidend. Wird zum Beispiel die Höhe der Infektionsgefährdungen durch die Biostoffe der niedrigeren Risikogruppe bestimmt, können diese Tätigkeiten der niedrigeren Schutzstufe zugeordnet werden.

Beispiele für nicht gezielte Tätigkeiten sind ausführlich in Nr. 4.4.1 der TRBA 100 beschrieben.

4.6 Festlegung der Schutzmaßnahmen

Basierend auf der zugeordneten Schutzstufe und der gegebenenfalls zu beachtenden toxischen, sensibilisierenden und sonstigen die Gesundheit schädigenden Wirkungen der Biostoffe, werden mit dem Ziel, die Exposition der Beschäftigten zu verhindern bzw. zu minimieren, die geeigneten Schutzmaßnahmen festgelegt.

Die Festlegung folgt dem Prinzip, dass (soweit möglich) weniger gefährliche Biostoffe eingesetzt werden sollen (Substitution). Ist dies nicht möglich, haben technische/ bauliche Maßnahmen Vorrang vor organisatorischen, persönlichen und verhaltensbezogenen Schutzmaßnahmen (STOP-Prinzip).

Geeignete Schutzmaßnahmen sind in der TRBA 100 aufgeführt (siehe auch Kapitel 7 „Schutzmaßnahmen“).

Um bei den Beschäftigten ein Sicherheitsbewusstsein zu schaffen und den innerbetrieblichen Arbeitsschutz bei Tätigkeiten mit Biostoffen fortzuentwickeln, muss die Unternehmensleitung geeignete Maßnahmen in der Unterweisung, wie sie in der TRBA 400 beschrieben werden, ergreifen. Ziel dieser Maßnahmen ist die Etablierung und Fortentwicklung einer Sicherheitskultur im Unternehmen.

4.7 Dokumentation

Die Unternehmensleitung hat das Ergebnis der Gefährdungsbeurteilung zu dokumentieren. Die Unterlagen müssen bei gezielten Tätigkeiten ein Verzeichnis der verwendeten Biostoffe enthalten. Bei nicht gezielten Tätigkeiten ist dieses Verzeichnis zu führen, soweit die möglicherweise auftretenden Biostoffe bekannt und für die Gefährdungsbeurteilung maßgeblich sind. Auf das Verzeichnis kann verzichtet werden, wenn ausschließlich Tätigkeiten mit Biostoffen der Risikogruppe 1, die keine sensibilisierenden oder toxischen Eigenschaften besitzen, durchgeführt werden.

Die Überprüfung (spätestens alle 2 Jahre) und eine gegebenenfalls erforderliche Aktualisierung der Gefährdungsbeurteilung sind ebenfalls zu dokumentieren.

Details zur Gefährdungsbeurteilung sind in der TRBA 400 „Handlungsanleitung zur Gefährdungsbeurteilung und für die Unterrichtung der Beschäftigten bei Tätigkeiten mit biologischen Arbeitsstoffen“ und zur Risikobewertung bzw. Sicherheits einstufung in der Gentechnik-Sicherheitsverordnung in §§ 4–7 beschrieben.

10 Siehe Nr. 10 Abs. 4 der TRBA 400
4.8 Betriebsanweisung und Unterweisung

Gemäß § 14 Abs. 1 Biostoffverordnung ist auf Grundlage der Gefährdungsbeurteilung eine Betriebsanweisung zu erstellen und bei Bedarf (z. B. bei maßgeblicher Veränderung der Arbeitsbedingungen) zu aktualisieren. Diese ist nicht notwendig, wenn ausschließlich Tätigkeiten mit Biostoffen der Risikogruppe 1 ohne sensibilisierende oder toxische Wirkungen ausgeübt werden.

Die Betriebsanweisung ist den Beschäftigten zur Verfügung zu stellen (Aushang, Auslage, digital). Sie muss in einer für die Beschäftigten verständlichen Form und Sprache verfasst sein und insbesondere folgende Informationen enthalten:

- die bei den Tätigkeiten auftretenden Gefährdungen, insbesondere
 - die verwendeten oder möglicherweise auftretenden Biostoffe und deren Risikogruppen sowie
 - die relevanten Übertragungswege bzw. Aufnahmepfade
- Schutzmaßnahmen und Verhaltensregeln
 - Maßnahmen zur Expositionsverhütung
 - innerbetriebliche Hygiemaaßnahmen, gegebenenfalls Verweis auf den Hygieneplan
 - Tragen, Verwenden und Ablegen von persönlichen Schutzausrüstungen
- Verhalten im Notfall, bei Unfällen und Betriebsstörungen
- Erste-Hilfe-Maßnahmen, gegebenenfalls Hinweise zur Postexpositionsprophylaxe (PEP)
- Entsorgungsmaßnahmen für kontaminierte feste und flüssige Abfälle

Beispiele für Musterbetriebsanweisungen sind in der TRBA 500, der DGUV Information 213-016 „Betriebsanweisungen nach der Biostoffverordnung“ sowie im Anhang 9 dieser Schrift enthalten.

Die Unterweisung soll generell so gestaltet sein, dass das Sicherheitsbewusstsein der Beschäftigten gestärkt wird. Die Umsetzung der Unterweisungsinhalte ist zu kontrollieren.

Im Rahmen der Unterweisung soll auch eine allgemeine arbeitsmedizinische Beratung mit Hinweisen zu besonderen Gefährdungen, zum Beispiel bei vermindelter Immunabwehr (z. B. Strahlenbehandlung, Einnahme von Immunsuppressiva, Zytostatika, Corticosteroiden oder Antibiotika), durchgeführt werden, sofern die verwendeten Biostoffe dies erfordern, z. B. bei sensibilisierenden oder toxisch wirkenden Biostoffen. Beschäftigte mit Ekzemen oder anderen Hauterkrankungen sollten nicht mit Krankheitserregern umgehen.

Für Tätigkeiten der Schutzstufen 3 und 4 sind zusätzlich zur Betriebsanweisung Arbeitsanweisungen zu erstellen, die am Arbeitsplatz vorliegen müssen. Arbeitsanweisungen sind auch erforderlich für folgende Tätigkeiten mit erhöhter Infektionsgefährdung, z. B.:

- Instandhaltungs-, Reparatur-, Reinigungs-, Änderungs- oder Abbrucharbeiten in oder an kontaminierten Arbeitsmitteln,
- Tätigkeiten, bei denen erfahrungsgemäß eine erhöhte Unfallgefahr besteht,
- Tätigkeiten, bei denen bei einem Unfall mit schweren Infektionen zu rechnen ist; dies kann bei der Gewinnung von Proben menschlichen oder tierischen Ursprungs der Fall sein.

Gefährdungsbeurteilung
4.9 Substitutionsgebot und biologische Sicherheitsmaßnahmen

Bei vielen Tätigkeiten im Labor ist jedoch eine Substitution weder möglich noch zielführend. Nach § 7 Abs. 1 Nr. 2 der Biostoffverordnung ist das Ergebnis der Substitutionsprüfung Bestandteil der Dokumentation der Gefährdungsbeurteilung.

Um als Teil einer biologischen Sicherheitsmaßnahme anerkannt werden zu können, muss ein Empfängerorganismus wissenschaftlich beschi schrieben sein und darf sich nur unter Bedingungen vermehren, die außerhalb gentechnischer Anlagen selten oder nicht angetroffen werden (§ 6 Abs. 4 Gentechnik-Sicherheitsverordnung). Ein Vektor kann anerkannt werden, wenn er begrenzte Wirtsspezifität aufweist und nicht über ein eigenes Transfersystem verfügt (§ 6 Abs. 5 Gentechnik-Sicherheitsverordnung). Anerkannte biologische Sicherheitsmaßnahmen sind in Anhang II der Gentechnik-Sicherheitsver ordnung veröffentlicht und entsprechende Empfängerstämme in einer Datenbank der ZKBS gelistet.11

Die Anwendung biologischer Sicherheitsmaßnahmen erhöht grundsätzlich das Maß der Sicherheit bei gentechnischen Arbeiten. Das bedeutet, dass die Arbeiten einer niedrigeren Sicherheitsstufe zugeordnet werden können oder auch eine einzelne technische Sicherheitsmaßnahme kompensiert werden kann. Letzteres ist zum Beispiel bei den Anforderungen an die Abwasser- und Abfallbehandlung aus gentechnischen Anlagen der Sicherheitsstufe 1 der Fall (§ 13 Abs. 2 Gentechnik-Sicherheitsverordnung).

4.10 Biosecurity in mikrobiologischen und biotechnischen Laboratorien

11 Siehe dazu auch die allgemeinen Stellungnahmen, die die ZKBS zu sicherheitsrelevanten Fragestellungen verabschiedet, wenn davon auszugehen ist, dass diese häufig bei gentechnischen Arbeiten auftreten – siehe Literaturverzeichnis Abschnitt 5
Fehlgebrauch geschützt bleiben. Um dies zu gewährleisten, müssen die Schutzmaßnahmen eingehalten werden, welche aus der Gefährdungsbeurteilung mit Blick auf die jeweiligen Schutz- und Sicherheitsstufen abgeleitet worden sind. Deren Wirksamkeit ist durch regelmäßige Kontrollen/Inspektionen zu überprüfen und gegebenenfalls anzupassen.

Biosecurity-Programme sind insbesondere für solche Laboratorien erforderlich, die mit Biostoffen und biogenen Toxinen arbeiten, die beispielsweise in der Kriegswaffenliste des Gesetzes über die Kontrolle von Kriegswaffen, der „EU list of high threat pathogens“\(^{12}\), der amerikanischen CDC/USDA-Liste über „Select Agents and Toxins“\(^{13}\) oder der Australia Group „List of Human and Animal Pathogens and Toxins for Export Control“\(^{14}\) enthalten sind. Darüber hinaus empfiehlt die Weltgesundheitsorganisation (WHO), grundsätzlich alle Laboratorien der Schutz- und Sicherheitsstufen 3 und 4 in Biosecurity-Betrachtungen mit einzubeziehen\(^{15}\).

Gesetzliche Grundlagen zur Berücksichtigung von Biosecurity-Anforderungen finden sich im Anhang II der Biostoffverordnung (Zugangskontrolle zu Biostoffen) und im Sicherheitsüberprüfungsgesetz (Zuverlässigkeit des Personals). Zudem dient die von der Deutschen Forschungsgemeinschaft (DFG) und der Nationalen Akademie der Wissenschaften Leopoldina empfohlene Etablierung von Kommissionen für Ethik sicherheitsrelevanter Forschung (KEF) der selbstkritischen Überprüfung biosicherheitsrelevanter Forschungsaktivitäten mit Dual-Use-Problematis (Dual Use Research of Concern, DURC)\(^{16}\).

Ausführlichere Informationen zu Biosecurity, wie Erstellung und Entwicklung eines Biosecurity-Programms, Leitfaden zum Biosecurity Risk Assessment, Management-Programm und Gentechnik-Notfallverordnung werden im Downloadcenter der BG RCI unter downloadcenter.bgrci.de (Suchbegriff: B 002) zur Verfügung gestellt.

\(^{13}\) Online unter www.selectagents.gov/SelectAgentsandToxinsList.html

\(^{14}\) Online unter https://australiagroup.net/en/human_animal_pathogens.html

\(^{15}\) „Biorisk management – Laboratory biosecurity guidanc“ der WHO – siehe Literaturverzeichnis Abschnitt 5

\(^{16}\) Siehe dazu www.leopoldina.org/de/ueber-uns/kooperationen/gemeinsamer-ausschuss-dual-use/
5 Laboratoriumseinrichtung und -ausstattung

5.1 Allgemeines

› die Auswahl geeigneter Arbeitsmittel und deren sichere Verwendung,
› die für den vorgesehenen Verwendungszweck geeignete Gestaltung von Arbeits- und Fertigungsverfahren sowie
› die Qualifikation und Unterweisung der Beschäftigten.

Nach § 3 Betriebssicherheitsverordnung ist die Unternehmensleitung verpflichtet, für die sichere Bereitstellung und Benutzung von Arbeitsmitteln eine Gefährdungsbeurteilung durchzuführen, aus der die Gefährdungen und Wechselwirkungen mit Biostoffen und den Einrichtungen der Arbeitsumgebung hervorgehen. Außerdem sind für die Arbeitsmittel (hier: Laborgeräte) die Art, der Umfang und die Fristen für die erforderlichen Prüfungen zu ermitteln und festzulegen. Auch sind die Qualifikationsanforderungen an das Servicepersonal festzulegen, die mit der Prüfung und Erprobung der Geräte betraut sind (siehe Kapitel 8 „Prüfungen in Laboratorien“).

5.2 Raumlufttechnische Anlagen

Wenn die Gefährdungsbeurteilung ergibt, dass eine Anreicherung von Gefahrstoffen nicht ausgeschlossen werden kann, ist eine Lüftungsanlage mit mindestens 6- bis 8-fachem Luftwechsel erforderlich. Mögliche Desinfektions-/Dekontaminationsmaßnahmen in den Räumlichkeiten sind zu berücksichtigen.

Über RLT-Anlagen ist eine angemessene Innenraumluftqualität sicherzustellen, d. h. Lasten in der Raumluft (z. B. Abwärme von Geräten, Gerüche) sind zu minimieren oder freigesetzte Stoffe (z. B. Kohlendioxid) soweit abzuführen oder zu verdünnen, dass eine Gesundheitsgefährdung der Beschäftigten über die Atemluft vermieden wird. Durch den Betrieb der RLT-Anlagen darf keine Verschlechterung der Raumluft und damit eine potenzielle Gefährdung der Beschäftigten innerhalb der Laborräume erfolgen.

17 Als Arbeitsgegenstand im Sinne von § 3 Abs. 2 Nr. 3 BetrSichV

RLT-Anlagen müssen nach dem Stand der Technik ausgelegt sein. Ein Luftwechsel von 25 m³/h pro m² Nutzfläche des Laboratoriums (ca. 8-fache Luftaustauschrate) mit Außenluft ist einzuhalten. Dieser kann reduziert werden, wenn die Gefährdungsbeurteilung ergibt, dass diese Maßnahme für die vorgesehenen Tätigkeiten dauerhaft ausreichend und wirksam ist und wenn dies innerhalb der Arbeitsbereiche angezeigt wird.

Grundsätzlich sind die Außen-, Zu- und Abluft entsprechend den Vorgaben der DIN EN 16798 über Filter (Grob-/Feinstaubfilter) zu führen.

Die Abluft darf ganz oder teilweise über die Abzüge geführt werden, wenn dabei die volle Leistung der Abzüge erhalten bleibt und keine Biostoffe freigesetzt werden.

Bei der Planung der RLT-Anlage sind ausreichend bemessene Wartungsflächen für den sicheren Filterwechsel sowie gegebenenfalls die erforderlichen Anschlüsse für die Begasung und Klappen zur Absperrung des Lüftungskanalnetzes zu berücksichtigen.

Durch die RLT-Anlagen ist im Brandereignisfall ein Unterdruck im Schutz- und Sicherheitsstufenbereich sicherzustellen, ohne dass die Wirksamkeit der Löschanlagen beeinflusst wird. Über die RLT-Anlagen kann Rauch bedingt und gefiltert ins Freie abgeführt werden.19

5.3 Abwasserbehandlungsanlagen

Bei der Dimensionierung der thermischen Abwasserbehandlungsanlage sind auch andere Abwassereinträge (wie potenziell kontaminiertes Löschwasser oder Duschwasser) zu berücksichtigen.

Als geeignete Verfahren der Abwasserbehandlung kommt die validierte thermische Inaktivierung (bestimmte Temperatur- und Druckbedingungen während bestimmter Verweilzeiten) in Betracht. Die zuständige Behörde kann auf Antrag auch andere Verfahren zulassen, wenn sichergestellt ist, dass sie umweltverträglich sind.

Flüssige Laborabfälle sind keine Abwässer und dürfen grundsätzlich nicht in die Abwasserbehandlungsanlage eingeleitet werden.

19 Die Rauchableitung ist im Beschluss 5/2013 des ABAS vom 22.04.2013 (Technische Stellungnahme zum Thema „Rauchableitung aus Laboratorien der Schutz- und Sicherheitsstufen 1, 2 und 3“) ausführlich beschrieben.
5.4 Mikrobiologische Sicherheitswerkbänke (MSW)

5.4.1 Allgemeines

Mikrobiologische Sicherheitswerkbänke (MSW) sind Schutzeinrichtungen, welche die Nutzerinnen und Nutzer, die Umwelt und unter Umständen auch das Produkt vor Biostoffen schützen.

Es existieren drei unterschiedliche Klassen von MSW gemäß DIN EN 12469 hinsichtlich der einzuhaltenden Schutzfunktionen:

- Klasse I: Personenschutz
- Klasse II: Personen-, Produkt- und Verschleppungsschutz
- Klasse III: erhöhter Personenschutz, Produktschutz

MSW dürfen nicht als Laborabzüge gemäß DIN EN 14175 ff. oder Sicherheitswerkbänke und Isolatoren für Zytostatika gemäß DIN 12980 verwendet werden.\(^\text{20}\)

MSW müssen gemäß dem Stand der Technik ausgewählt und betrieben werden.\(^\text{21}\)

20 Siehe hierzu die Broschüre „Zytostatika im Gesundheitsdienst“ der BGW (M620)
21 Siehe hierzu z. B. ABAS-Beschluss 14/2015 vom 09.12.2015 „Beschaffungsempfehlung für mikrobiologische Sicherheitswerkbänke der Klasse 1, 2, 3 und vergleichbare Arbeitsschutzeinrichtungen“
5.4.2 Betrieb und Prüfung

Der Betreiber hat die MSW gemäß den Herstellerangaben so aufzustellen und zu betreiben, dass jederzeit die Schutzfunktion(en) und ein sicheres Arbeiten für die Beschäftigten gewährleistet sind. Luftbewegungen aus Luftauslassöffnungen, durch in der MSW betriebene Geräte (z. B. Gasbrenner, Zentrifugen), durch vorbeigehende Personen und beim Öffnen von Türen und Fenstern dürfen die Schutzfunktionen der MSW nicht beeinträchtigen.

MSW sind vor der Inbetriebnahme, nach einer wesentlichen, sicherheitstechnisch relevanten Änderung oder Instandhaltung (z. B. Umstellen, Filteraustausch) und in regelmäßigen Zeitabständen (in der Regel jährlich, gegebenenfalls abhängig von der Betriebszeit) zu prüfen (siehe Kapitel 8 „Prüfungen in Laboratorien“). Die Prüfungen müssen von fachkundigem, für diese Prüfung befähigtem Personal durchgeführt werden und sind schriftlich zu dokumentieren.

Es ist eine Betriebsanweisung zu erstellen. Alle an der MSW tätigen Beschäftigten sind von der Laborleitung zu unterweisen.

Besonders zu beachten sind das Be- und Entladen, die Reinigung und Desinfektion bzw. Dekontamination, der Umfang und die Position der Geräte und Utensilien im Arbeitsraum und der Personenverkehr vor der Arbeitsöffnung während des Betriebs.

Insbesondere bei Tätigkeiten mit Gefährdungspotenzial muss sich die MSW im bestimmungsgemäßen, sicheren Betriebszustand (u. a. Scheibe in Sollposition, Sollströmungsverhältnisse respektive Unterdruck, Ansaugöffnungen frei) befinden.

22 Als ABAS-Beschlüsse veröffentlicht unter www.baua.de, Suchbegriff „Stellungnahmen zur Labortechnik“
23 Verfügbar unter www.zkbs-online.de, Bereich „Allgemeine Stellungnahmen/Sicherheitsmaßnahmen“
5.4.3 Geräte und Einbauten innerhalb einer MSW

Biostoffe (ausgenommen Biostoffe der Risikogruppe 1 ohne sensibilisierende oder toxische Wirkungen) sind vorzugsweise in einer MSW oder in einer im Personenschutz vergleichbaren Einrichtung zu handhaben. Dies kann das Einbringen von Geräten oder Einbauten in MSW erforderlich machen. Da hierdurch die Schutzwirkung der MSW beeinträchtigt werden kann, ist eine erneute Inbetriebnahmeprüfung zum Nachweis des Personenschutzes erforderlich. Beispiele hierfür sind:

- Zentrifugen
- Gasbrenner
- Rührer
- Pipettierautomaten
- Gewebehomogenisatoren

Dabei ist zu beachten:
- Der gesamte Innenraum der MSW und deren Einbauten müssen leicht zu desinfizieren/dekontaminieren sein.
- Es ist eine Betriebsanweisung zu erstellen, die eine gerätespezifische Arbeitsanweisung beinhaltet.
- Die Beschäftigten sind anhand von Arbeitsanweisungen und Betriebsanweisungen zu unterweisen.
- Vor Wartungs- und Instandhaltungsarbeiten an der MSW, bei denen es zu einer Exposition gegenüber Biostoffen kommen kann, ist eine Dekontamination/Desinfektion durchzuführen. Ist dies nicht möglich, muss das Wartungspersonal gegebenenfalls zusätzlich persönliche Schutzausrüstungen wie Atemschutz, Schutzhandschuhe und Laborkittel tragen.
- Im Ergebnis der Gefährdungsbeurteilung wird festgelegt, wann eine Dekontamination der gesamten MSW vor einer Freigabe erforderlich ist.

5.5 Laborabzüge

Für Tätigkeiten mit Gefahrstoffen in mikrobiologischen Laboratorien können Laborabzüge erforderlich sein. Werden darin Tätigkeiten mit Biostoffen durchgeführt, ist zu beachten, dass diese nicht freigesetzt werden dürfen (Abluftfilter!).

Die Abzüge sollen den europäischen Normen für Laborabzüge DIN EN 14175 entsprechen (siehe hierzu auch Kapitel 6.3.1 der DGUV Information 213-850 „Sicheres Arbeiten in Laboratorien“ und Merkblatt T 032 „Laborabzüge – Bauarten und sicherer Betrieb“).

5.6 Zentrifugen

24 Siehe Abschnitt 7.3 im Merkblatt B011 „Sicheres Arbeiten an mikrobiologischen Sicherheitswerkbänken“ der BG RCI
25 Siehe Literaturverzeichnis Abschnitt 4
26 Siehe Literaturverzeichnis Abschnitt 3
27 Siehe dazu Kapitel 2.11 Teil 3 „Zentrifugen“ der DGUV Regel 100-500 „Betreiben von Arbeitsmitteln“
Ein sorgfältiges Ausbalancieren des Rotorinhalts ist zur Vermeidung von Unwuchten sehr wichtig; ein adäquat gefülltes Gefäß als Gegengewicht zum Austarieren ist erforderlich. Eine Waage zur Tara-Ermittlung ist empfohlen.

Bei der Verwendung von Zentrifugen muss sichergestellt sein, dass keine Aerosole in den Arbeitsbereich gelangen. Dazu sind insbesondere folgende Maßnahmen geeignet:

- Betreiben der Zentrifuge in Abzügen mit Abluftfilter oder geeigneten Sicherheitswerkbänken,
- Verwendung dichter Zentrifugen (z. B. kontinuierlich betriebene In-line-Geräte),
- Verwendung eines Rotors mit dicht schließendem Deckel,
- Verwendung bruchsicherer und geschlossener Zentrifugeneinsätze oder -gefässe oder Einstellung nicht bruchsicherer Zentrifugen (wenn deren Verwendung unvermeidbar ist) in geschlossene und bruchsichere Einsätze.

Auf die besonderen Gefahren bei Tätigkeiten mit entzündbaren Substanzen ist zu achten (Explosionsgefahr). Nur geeignete, entsprechend gekennzeichnete Zentrifugen dürfen hierfür verwendet werden.

In einem Festwinkelrotor muss die Füllhöhe der Gefäße so gewählt werden, dass Dichtung und Deckel während des Zentrifugierens nicht mit Zentrifugiergut benetzt werden. Dadurch werden beim Öffnen des Deckels Aerosolbildung und außen herunterlaufende Tropfen vermieden bzw. minimiert.

Bei einer Störung der Zentrifuge während des Laufes ist nach dem Stillstand des Rotors und vor dem Öffnen ein ausreichender Zeitraum abzuwarten, damit sich eventuell entstandene Aerosole innerhalb des Gerätes absetzen können.

Zentrifugen sind regelmäßig zu prüfen und zu warten. Dies schließt die Kontrolle von Rotoren und Zubehör ein (siehe dazu Kapitel 8.4 „Wiederkehrende Prüfungen“).

5.7 Homogenisatoren und Zellaufschlussgeräte

Homogenisatoren und Zellaufschlussgeräte müssen nach dem Betrieb gut zu reinigen und desinfizierbar sein. Sie müssen daher beständig gegenüber den verwendeten Desinfektionsmitteln sein.

Beim Aufschluss von Zellen und Geweben mittels Ultraschall sollte zur Aerosolvermeidung möglichst anstelle der Verwendung von Ultraschallsonden eine Beschallung der Probengefäße in Ultraschallböndern erfolgen. Ist dies nicht möglich, so ist beim Umgang mit Biostoffen ab der Risikogruppe 2 auf eine geeignete dichte Einhausung während des Betriebes zu achten oder die Tätigkeit in eine MSW zu verlagern.

5.8 Zellsortierer

Für den Betrieb eines FACS (Fluorescence Activated Cell Sorter)-Gerätes gilt: Das FACS-Gerät muss entweder so beschaffen sein, dass die Freisetzung von Bioaerosolen ab der Risikogruppe 2 in den Arbeitsbereich vermieden wird (z. B. Einhausung) oder der Betrieb erfolgt innerhalb einer MSW der Klasse 2. In beiden Fällen muss das Rückhaltevermögen an der Arbeitsöffnung gemäß DIN EN 12469 gewährleistet sein.
5.9 Laborfermenter (Bioreaktoren)

Typische Schwachstellen der Konstruktionen sind das Kulturgefäß aus Glas (Druck und Temperatur), Schlauchleitungen (Perforation durch Fabrikationsfehler, mechanische Belastung oder Ermüdung) oder z. B. Dichtungen (mechanische Beschädigungen, Versprödungen, Quetschungen).

Abbildung 11: FACS-Gerät innerhalb einer MSW

Abbildung 12: Laborfermenter

Das vom Gesetzgeber im Gentechnikrecht durch die vier Sicherheitsstufen implementierte System der Risikosteuerung ist für den Aspekt der Abluft aus Fermentern besonders deutlich erkennbar.

Stufe 1: Verhindern, dass größere Mengen an Kultursuspension über die Abluft aus den technischen Apparaturen austreten.

Stufe 2: Austreten von gentechnisch veränderten Organismen über die Fermenterabluft auf ein Minimum beschränken.

Stufe 3: Fermenterabluft muss entweder über ein geeignetes Filtersystem, z. B. mit Hochleistungsschwebstoff-Filter, abgeführt werden, oder ist durch Erhitzen zu sterilisieren.

Stufe 4: Die Abluft der Fermenter ist über Doppelmembranfilter zu führen.

Abbildung 13: Einweg-Bioreaktor

28 Die aufgeführten Anforderungen der GenTSV (Anhang III B I, Nr. 3) sind für den Produktionsbereich verbindlich, können jedoch auch für Laboratorien als Grundlage für die Festlegung von Schutzmaßnahmen herangezogen werden.
5.10 Laborroboter

Maßnahmen zum sicheren Betrieb von Laborrobotern und anderen (teil-) automatisierten Geräten und Systemen beinhalten vorrangig technische Schutzmaßnahmen. Sie müssen bereits in der Planungsphase durch eine vorausgehende Gefährdungsbeurteilung konzipiert und festgelegt werden. Wichtige Aspekte dabei sind z. B.

› Bildung und Freiwerden von Aerosolen,
› mechanische Gefährdungen,
› erforderliche Bedienereingriffe (einschließlich Störungsbeseitigung).

Auch Reinigung, Desinfektion, Wartung und Instandsetzung sowie Abfallbeseitigung (fest/flüssig) sind zu berücksichtigen.

Abbildung 14: Zellkultur

Auf die (völlige) Einhausung und Absaugung der Laborroboter kann verzichtet werden, wenn im Rahmen der Gefährdungsbeurteilung eine gesundheitliche Beeinträchtigung der Beschäftigten ausgeschlossen werden kann.

Roboter und vergleichbare (kraftbetriebene) Systeme fallen unter den Geltungsbereich der EU-Maschinenrichtlinie. Daher hat der Hersteller u. a. eine CE-Konformitätserklärung zu erstellen und eine CE-Kennzeichnung vorzunehmen. Für Importe aus Staaten, die nicht zum Europäischen Wirtschaftsraum gehören, liegt diese Verpflichtung beim Importeur. Auch nach wesentlichen Veränderungen kann eine erneute Durchführung des Konformitätsbewertungsverfahrens erforderlich werden.\(^{29}\)

\(^{29}\) Siehe Interpretationspapier des BMAS zum Thema „Wesentliche Veränderung von Maschinen“ (Bek. des BMAS vom 09.04.2015) sowie Arbeitshilfen der BG RCI (www.bgrci.de, Seiten ID: #9S1J)
Beim Einsatz von Robotern in gentechnischen Projekten gehören diese zur sicherheitsrelevanten Einrichtung der gentechnischen Anlage und unterliegen entsprechenden Anzeige-/Mitteilungspflichten gemäß Gentechnikgesetz.

5.11 Autoklaven (Dampfsterilisatoren)

5.11.1 Allgemeines

Die Behandlung von Materialien und infektiösen Abfällen mit gespanntem, gesättigtem Dampf unter Druck bezeichnet man als Autoklavieren.

Die Inhalte dieses Kapitels über Autoklaven (Dampfsterilisatoren) betreffen insbesondere die Abfallbehandlung sowie die Bereitstellung z. B. steriler Instrumente, Kulturmedien oder sterilen Verbrauchsmaterials.

Das Autoklavieren ist die allgemein anerkannte und bevorzugte Methode der Inaktivierung vor der Abfallentsorgung. In der TRBA 100 wird für kontaminierte flüssige und feste Abfälle Autoklavieren als geeignetes thermisches Verfahren beschrieben. In der Gentechnik-Sicherheitsverordnung ist sogar festgelegt, dass andere physikalische Methoden oder eine chemische Inaktivierung nur auf Antrag und nach Zulassung durch die Genehmigungsbehörde angewandt werden dürfen.
5.11.2 Beschaffenheit: Gerätetypen, Bau und Ausrüstung

Die wesentlichen Konstruktionstypen sind Tischautoklaven, vertikale Standautoklaven, eintürige (Kammer-)Autoklaven und Durchreicheautoklaven.

Kontaminierte Prozessabluft darf nicht unbehandelt in den Arbeitsbereich abgegeben werden, sondern muss zuvor durch geeignete Verfahren (wie z. B. Sterilfiltration (Porengöße 0,2 µm) oder thermische Abluftbehandlung) dekontaminiert werden. Das anfallende Kondensat muss mit inaktiviert werden. Hierfür gibt es, je nach Bauart der Autoklaven, verschiedene technische Systeme; in der Regel erfolgt dies im Druckbehälter direkt. Dies ist im Rahmen der Gefährdungsbeurteilung festzulegen und zu überprüfen.

Weitere Einzelheiten über die Beschaffenheit von Autoklaven und erforderliche Sicherheitsausstattungen enthalten die Normen DIN 58951-230 bzw. DIN EN 1306031 (für den Bereich Pharma und Medizinprodukte).

Abbildung 16: Ladewagen mit Einschub und Autoklaviertrommel vor einem Durchreicheautoklaven
5.11.3 Betrieb: Aufstellung, Inbetriebnahme und Prüfungen

<table>
<thead>
<tr>
<th>Schutz- oder Sicherheitsstufe</th>
<th>BioStoffV</th>
<th>GenTSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Innerhalb des Betriebsgeländes des Standortes</td>
</tr>
<tr>
<td>2</td>
<td>Im Gebäude</td>
<td>In der gentechnischen Anlage oder innerhalb desselben Gebäudes</td>
</tr>
<tr>
<td>3</td>
<td>RG 3(““): Im Gebäude</td>
<td>Im Laborbereich der gentechnischen Anlage</td>
</tr>
<tr>
<td></td>
<td>RG 3: Im Schutzstufenbereich</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Im Schutzstufenbereich (Durchreicheautoklav)</td>
<td>Im Labor (Durchreicheautoklav)</td>
</tr>
</tbody>
</table>

Tabelle 5: Aufstellorte von Autoklaven (Laboratorien)

Nach der Betriebssicherheitsverordnung obliegen der Unternehmensleitung die Aufstellung, Wartung und Prüfung der Einrichtung.

Aufstellung und Inbetriebnahme:

Auch für Autoklaven, die nicht überwachungsbedürftig sind, ist eine Prüfung vor der erstmaligen Inbetriebnahme erforderlich. Dies gilt hinsichtlich des bestimmungsgemäßen Zustands und der sicheren Funktion. Die Prüfung ist von einer zur Prüfung befähigten Person nach TRBS 1203 durchzuführen. Die Ergebnisse dieser Prüfung sind aufzuzeichnen, die Aufzeichnung ist aufzubewahren (siehe auch Tabelle 4).

Wartung, Instandhaltung, wiederkkehrende Prüfungen:
Autoklaven unterliegen als Druckbehälter unter bestimmten Voraussetzungen der Betriebssicherheitsverordnung und müssen in regelmäßigen Intervallen überprüft werden. Die Komplexität der Prüfung sowie die Anforderungen an die prüfenden Personen steigen dabei mit zunehmendem Produkt aus Druck und Volumen.

Abbildung 17: Durchreicheautoklaven (mit unterschiedlichen Einschüben)

32 Autoklaven können auch nach dem Medizinproduktegesetz bzw. der Medizinprodukte-Betreiberverordnung betrieben werden.
Für Autoklaven, die als überwachungsbedürftige Anlagen eingestuft werden, sind nach § 15 Betriebssicherheitsverordnung und, sofern zutreffend, nach Anhang 2 Abschnitt 4 Punkt 6.33 „Druckgeräte mit Schnellverschlüssen“ die folgenden, in Tabelle 6 genannten wiederkehrenden Prüfungen vorgeschrieben:

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Autoklaven ohne interne Dampferzeugung</th>
<th>Autoklaven mit interner Dampferzeugung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Äußere Prüfung</td>
<td>max. 2 Jahre</td>
<td>max. 1 Jahr</td>
</tr>
<tr>
<td>Innere Prüfung</td>
<td>max. 5 Jahre</td>
<td>max. 3 Jahre</td>
</tr>
<tr>
<td>Festigkeitsprüfung</td>
<td>max. 10 Jahre</td>
<td>max. 9 Jahre</td>
</tr>
</tbody>
</table>

Tabelle 6: Prüffristen für Autoklaven

Die Höchstfristen gelten für Autoklaven, die wiederkehrend durch eine Zugelassene Überwachungsstelle (ZÜS) geprüft werden. Der Betreiber hat die Prüffristen spätestens 6 Monate nach Inbetriebnahme zu ermitteln und von einer ZÜS überprüfen zu lassen.

Bei Autoklaven, die keine überwachungsbedürftigen Anlagen sind und somit ausschließlich als Arbeitsmittel eingestuft werden, legt die Unternehmensleitung Art, Umfang und Tiefe der erforderlichen Prüfungen sowie die Prüffristen auf der Grundlage einer Gefährdungsbeurteilung fest.

Autoklaven sind auch nach prüfpflichtigen Änderungen zu prüfen.

Ausführlichere Informationen zum Thema „Prüfung von Autoklaven“ werden im Downloadcenter der BG RCI unter downloadcenter.bgrci.de (Suchbegriff: B 002) zur Verfügung gestellt.

Autoklavenprogramme zur Inaktivierung von festen, flüssigen und porösen Abfällen

Weiterhin muss bei der Auswahl entsprechernder Programme beachtet werden, ob das Autoklaviergut mit Biostoffen mit erhöhter Hitzeresistenz belastet sein kann.

Für das Erreichen der vorgegebenen Temperatur ist beim Feststoffprogramm eine vollständige Evakuierung der Autoklavkammer und des Inaktivierungsgutes erforderlich, da die Temperatur bei gleichbleibendem Druck mit steigendem Luftanteil abnimmt.
<table>
<thead>
<tr>
<th>Programm</th>
<th>Nutzung</th>
<th>Temperatur, Haltezeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakuum</td>
<td>Feste Abfälle, poröse Abfälle</td>
<td>121 °C, 20 min</td>
</tr>
<tr>
<td>Vakuum</td>
<td>Feste Abfälle, thermostabil</td>
<td>134 °C, 20 min</td>
</tr>
<tr>
<td>Vakuum</td>
<td>Inaktivierung von HEPA-Filtern aus MSW oder RLT-Anlagen</td>
<td>134 °C, 60 min</td>
</tr>
<tr>
<td>Flüssigkeiten</td>
<td>Flüssige Laborabfälle</td>
<td>121 °C, 20 min</td>
</tr>
<tr>
<td>Vakuum</td>
<td>Futter für Tierhaltungsbereiche (SPF)</td>
<td>105 °C, 20 min</td>
</tr>
</tbody>
</table>

Tabelle 7: Beispiele für Autoklavenprogramme

5.11.4 Organisatorische Maßnahmen: Arbeitsverhalten, Desinfektion und Reinigung

Anhand der Betriebsanleitung, die vom Hersteller mitgeliefert werden muss, sowie auf Basis der betrieblichen Gefährdungsbeurteilung ist die Erstellung einer Betriebsanweisung erforderlich. Diese muss u. a. die Hauptgefahren bei der Bedienung von Autoklaven beschreiben, beispielsweise:

- Hautverletzung durch Kontakt mit Dampf und heißen Metallteilen,
- Verletzungsgefahr, z. B. beim Entladen durch Glasbruch oder andere scharfkantige Gegenstände,
- Verletzungen durch Bewegen schwerer Geräteteile (Deckel, Türen, Entnahme von Autoklaviergut, Bedienung von Hubvorrichtungen),
- Infektionsgefahr bei unvollständiger Inaktivierung nach nicht bestimmungsgemäßem Betrieb.

Arbeitsablauf bei der Abfallbehandlung:

- Autoklaven beladen: Die Autoklaven trommeln dürfen nicht zu dicht beladen werden. Autoklavenbeutel nicht verschließen, um einen Luftaustausch zu ermöglichen.
- Programmwahl: Je nach Autoklaviergut ist das richtige Programm zur sicheren Inaktivierung zu wählen. Die Programmparameter sind zu überprüfen.
- Flüssigkeitsprogramm: Der Temperaturfühler (Pt 100) muss in ein Referenzgefäß eingetaucht sein (Wandberührung vermeiden), das aus dem gleichen Material besteht und mit dem gleichen Volumen Wasser gefüllt ist wie der größte zu autoklavierende Behälter.
- Die Tür oder den Deckel ordnungsgemäß schließen und das eingestellte Programm starten.

Wie bei allen Laborgeräten ist auch hier durch die Laborleitung in den Schutz- und Sicherheitsstufen 2, 3 und 4 eine Freigabe (mit Freigabeschein) zur Wartung erforderlich.
5.12 Erstickend wirkende Gase

5.12.1 Flüssigstickstoff

Bei Tätigkeiten mit Flüssigstickstoff sind geeignete persönliche Schutzausrüstungen zu tragen. Diese bestehen aus flüssigkeitsdichten Tieftemperatur-Handschuhen, geschlossenem Laborkittel, Schürze, geschlossenem Schuhwerk und Gesichtsschutzschild.

Kryoröhrchen mit Schraubdeckelverschluss sind für die Lagerung in der Flüssigphase ungeeignet und dürfen nur in der Gasphase eingesetzt werden. In der Flüssigphase dürfen nur zugeschweißte Kryogefäße (Ampullen) gelagert werden. Falls doch versehentlich Schraubdeckelröhrchen in der Flüssigphase eingelagert wurden, sind diese in der Gasphase für mindestens einen Tag zwischenzulagern, bevor sie entnommen und aufgetaut werden dürfen.

Über die Einlagerungen und die Entnahmen von Proben im Flüssigstickstoff-Behälter ist Buch zu führen, um ein korrektes Wiederfinden zu ermöglichen und ein Vertauschen auszuschließen. Die Beschriftung der Probengefäße muss beständig sein.

5.12.2 Kohlendioxid

Kohlendioxid wird in biologischen Laboratorien sowohl gasförmig (z. B. in CO₂-Inkubatoren und Begasungsbrutschränken) als auch in Form von Trockeneis (z. B. für Transporte) eingesetzt. Gasförmiges CO₂ ist 1,5 mal schwerer als Luft, was die Ansammlung in Bodennähe sowie in abflusslosen Vertiefungen von Räumen und Kellern, Behältern, Anlagen, Geräten etc. begünstigt. Trockeneis hat eine Temperatur von –78,5 °C, sublimiert an der Luft bei Raumtemperatur, wobei 1 kg Trockeneis ca. 500 Liter CO₂ freisetzt.

Eine Gefährdung besteht vornehmlich durch die narkotische Wirkung (ab 8–10 Vol.-%) auf das Atemzentrum, auch wenn noch genügend Sauerstoff (ca. 19 Vol.-%) vorhanden ist. Weitere Gefährdungen sind die erstickende Wirkung durch Sauerstoffverdrängung sowie Kälteverbrennungen beim Berühren von Trockeneis mit der Haut.

Bei der Verwendung von gasförmigem CO₂ ist auf folgende Schutzmaßnahmen zu achten:
- Sachgerechte Auswahl und Installation der Gasentnahmeinrichtungen, der gasführenden Anlagenteile, der Armaturen etc. einschließlich regelmäßiger Prüfungen auf Dichtigkeit
- Sicherstellung der Dichtigkeit gasführender Leitungen und Anlagenteile auch bei Wartung und Instandhaltung
- Sicherer Umgang mit Gasflaschen (z. B. Transport, sichere Aufstellung, Anschluss von Armaturen)
- Geeignete Lüftungsmaßnahmen, bevorzugt Absaugungen mit Fortluftleitung, für freierdendes CO₂
- Gegebenenfalls Einsatz von Gaswarneinrichtungen34 (zu überwachende Größe: CO₂-Konzentration), abhängig von den Verwendungsbedingungen (Mengen, Lüftungsverhältnisse, RLT-Anlage)
- Kennzeichnung von Zugangstüren betroffener Arbeitsräume
- Ab der Schutz- und Sicherheitsstufe 3 ist es zu empfehlen, eine außerhalb der Sicherheitsbereiche gelegene zentrale CO₂-Versorgung einzurichten.

Zur sicheren Verwendung von Trockeneis tragen folgende Schutzmaßnahmen bei:
- Lagerung und Verwendung nicht in Kellern sowie in unzureichend gelüfteten Räumen
- Auch die kurzzeitige Lagerung von Trockeneisbehältnissen in Kühlräumen ist zu vermeiden.

34 Siehe auch Merkblatt T 021 „Gaswarneinrichtungen und -geräte für toxische Gase/Dämpfe und Sauerstoff – Einsatz und Betrieb“ (DGUV Information 213-056) der BG RCI
> Bereitstellung geeigneter Behälter und Gefäße zur Lagerung, Handhabung, Umfüllung und Transport. Gefäße zur La-
gerung und zum Transport dürfen nicht dichtschließend sein. Der durch Verdampfung entstehende Druck könnte den
Behälter sprengen.
> Bereitstellung und Nutzung von persönlichen Schutzausrüstungen zum Schutz der Haut (Schutzhandschuhe) und der
Augen (Schutzbrille).
> Regelungen zum Transport von Trockeneis, sowohl innerbetrieblich (insbesondere in Aufzügen) als auch in Fahrzeu-
gen. Beim Transport in Fahrzeugen darf keine Verbindung zwischen dem Laderaum und dem Fahrgastraum beste-
hen.35
> Die Personenrettung aus kohlendioxidverdächtigen Situationen ist nur unter Selbstschutz mit umluftunabhängigem Atem-
schutz durchzuführen.

Trockeneis darf in Bereichen mit unzureichender Lüftung nicht offen stehengelassen werden.

5.13 Sonderklimaräume

Gemeinschaftlich genutzte \textbf{Kühlräume} oder \textbf{Gefrierzellen} können bei fehlerhaftem Temperaturregime (Taupunkt) zur An-
Sofern Geräte eingebracht werden, die Wärmelasten erzeugen, sind diese vorab zu ermitteln und es ist zu prüfen, ob die
Sonderklimaräume diese Wärmelasten abführen können.

Abbildung 24: Schüttelkultureinrichtung, ungeschützt

Sofern ein längerer Aufenthalt (z. B. für Räum- und Sortiertätigkeiten) in diesen Räumen (in der Regel 4 °C) erforderlich
ist, wird besondere Schutzkleidung benötigt.

In Bruträumen kann es durch Luftumwälzung und Luftbefeuchtung leicht zu einer Ausbreitung von Bioaerosol aus einer
Leckage kommen, die zu einer mikrobiellen Besiedelung von Oberflächen führt. Auf Ungeziefer wie Silberfische oder
Kakerlaken ist besonders zu achten.

35 Siehe Nr. 2.15 im Merkblatt A 014 „Gefahrgutbeförderung in Pkw und in Kleintransportern“ (DGUV Information 213-012) der BG RCI

Rührkultursätze in Steilbrustflaschen der Dimension von 1–10 Liter sind sanft zu transportieren, vorzugsweise in Laborwägen mit Wanne.

Vorbeugende Maßnahmen, insbesondere gegen unerkannte Leckage, sind eine helle Raumbeleuchtung für die Sichtkontrolle, eine regelmäßige desinfizierende Reinigung und die Beschreibung von wirksamen Desinfektions- und Reinigungsarbeiten nach einem Vorfall in der Betriebsanweisung und im Hygieneplan (siehe auch Kapitel 9.4 und Anhang 6).
5.14 Mikrotom

5.15 Mikroskop

Kann eine Freisetzung von Bioaerosolen bzw. kontaminiertem Material beim Mikroskopieren nicht ausgeschlossen werden, so ist der Betrieb des Mikroskops unter einer geeigneten und überprüften Absaugvorrichtung (z. B. in einer Sicherheitswerkbank der Klasse II) notwendig (siehe auch Kapitel 5.5 „Laborabzüge“).

36 Hepes Glutamic Acid Buffer Mediated Organic Solvent Protection Effect
5.16 Arbeitsmittel und -verfahren mit besonderem Gefährdungspotenzial

Im Downloadcenter der BG RCI unter downloadcenter.bgrci.de (Suchbegriff: B 002) sind Beschreibungen zu folgenden häufig genutzten Arbeitsgeräten und -verfahren hinterlegt, bei denen ein erhöhtes Verletzungs- oder Infektionsrisiko besteht:

› UV-Strahler
› Laser
› Spritzen mit Hohlnadeln/Kanülen
› Impfösen
› Schütteln von Kulturgefäßen oder Proberöhrchen
› Pipettieren
› Öffnen von Kulturlaschen und Ampullen
› Lyophilisierung
› Arbeiten mit Vakuum

Abbildung 28: Gelelektrophorese
6 Persönliche Schutzausrüstungen einschließlich Schutzkleidung

Die Unternehmensleitung muss die geeigneten PSA kostenfrei zur Verfügung stellen und ihre einwandfreie Funktionsweise und ihren einwandfreien hygienischen Zustand (Wartung, Instandhaltung, Reinigung, Entsorgung) gewährleisten.

Die Beschäftigten sind verpflichtet, die PSA zu benutzen. Die Unternehmensleitung ist dafür verantwortlich, deren Benutzung zu überwachen und sicherzustellen.

Je nach Art des Biostoffs, seiner Einstufung in Risikogruppen und je nach Art der Tätigkeit, die mit diesem Arbeitsstoff ausgeübt werden soll, sind die PSA festzulegen.

Die PSA können unterschieden werden nach den möglichen Eintrittspforten und Übertragungswegen bzw. nach den zu schützenden Körperregionen:

> Mund: Atemschutz, Mund-Nasen-Schutz (MNS)\(^{38}\), Gesichtsschutz
> Haut: Handschutz, Schutzkleidung, Fußschutz
> Schleimhaut: Augen-Gesichtsschutz, Mund-Nasen-Schutz (MNS), Atemschutz
> Atemwege: Atemschutz

Tragezeitbegrenzungen sowie Unterweisungspflichten aus dem einschlägigen Regelwerk sind zu beachten. Dies gilt auch hinsichtlich der arbeitsmedizinischen Vorsorge (siehe DGUV Regel 112-190 „Benutzung von Atemschutzgeräten“ und Verordnung zur arbeitsmedizinischen Vorsorge).

\(^{37}\) Siehe Literaturverzeichnis Abschnitt 2

\(^{38}\) MNS ist kein Atemschutz. Er dient lediglich als Berührungsschutz zur Verhinderung von Schmierinfektionen (Hand-Mund-Kontakt), schützt aber nicht vor Aerosolen.

Können aufgrund der Arbeitsprozesse und Tätigkeiten dauerhaft sicher Augengefahren ausgeschlossen werden, kann auf den Augenschutz ausnahmsweise verzichtet werden. Dies ist in der Gefährdungsbeurteilung zu dokumentieren.

Auf Verschleppungsgefahren durch potenzielle Kontamination ist insbesondere beim Handschuhwechsel zu achten. Mit benutzten Handschuhen dürfen zum Beispiel keine Lichtschalter, Türklinken, Wasserhähne an Waschbecken, Telefonhörer, Schreibzeug angefasst werden.

\(^{39}\) Siehe dazu TRGS 526 „Laboratorien“ und DGUV Information 213-850 „Sicheres Arbeiten in Laboratorien“

\(^{40}\) Siehe ABAS Beschluss 603 „Schutzmaßnahmen bei Tätigkeiten mit Transmissibler Spongiformer Enzephalopathie (TSE) assoziierter Agenzien in TSE-Laboratorien“
getragen werden müssen, besteht eine Hautgefährdung durch den Feuchtigkeitsstau. Es muss daher ein Hautschutzplan (siehe Anhang 7) aufgestellt und festgelegt werden, welche Hautschutzcreme gegebenenfalls aufzutragen ist, bevor die Handschuhe angezogen werden. Da eine Wechselwirkung von Hautschutzmitteln und Handschuhen möglich ist, hat die Unternehmensleitung diese bei der Auswahl der persönlichen Schutzausrüstungen zu berücksichtigen (Nr. 6.4.1 Abs. 5 TRGS 401). Kriterien zur Auswahl von Handschuhen und Hautschutz finden sich zudem in der TRGS 401 „Gefährdung durch Hautkontakt“.

Das Tragen von flüssigkeitsdichten Schutzhandschuhen kann, je nach Tragedauer (regelmäßig mehr als 2 Stunden), die Durchführung arbeitsmedizinischer Vorsorge erforderlich machen (siehe Kapitel 15 „Arbeitsmedizinische Vorsorge“).

Je nach Tätigkeit, z. B. in der mikrobiologischen Sicherheitswerkbank, kann es erforderlich sein, den Übergang von Handschuh zu Laborkittel mit Einmal-Ärmelschonern abzudecken.

7 Schutzmaßnahmen

Mikrobiologische Laboratorien in der Bio- und Gentechnik werden üblicherweise Bereichen wie Forschung und Lehre, Entwicklung und Produktion sowie Untersuchung (einschließlich medizinischer Diagnostik und Umweltanalysen) zugeordnet.

Abbildung 32: Laborarbeitsplatz (virologische und molekularbiologische Tätigkeiten)

Werden in diesem Kapitel verbindliche Inhalte aus der TRBA 100 wiedergegeben, sind sie durch Fettdruck kenntlich gemacht.

Nach § 2 Abs. 7 Nr. 1 Biostoffverordnung sind Tätigkeiten das Verwenden von Biostoffen, insbesondere das Isolieren, Erzeugen und Vermehren, das Aufschließen, das Ge- und Verbrauchen, das Be- und Verarbeiten, das Ab- und Umfüllen, das Mischen und Abtrennen sowie das innerbetriebliche Befördern, das Aufbewahren einschließlich des Lagerns, das Inaktivieren und das Entsorgen.

In biologischen und gentechnischen Laboratorien werden bei Tätigkeiten mit Biostoffen überwiegend wasserchemische Methoden angewendet. Regelmäßig werden aber auch Tätigkeiten mit Gefahrstoffen, z. B. Acrylamid, Ethidiumbromid oder Bioziden, ausgeführt. Hierfür sind die grundlegenden Anforderungen aus der TRGS 526 und der DGUV Information 213-850 zu beachten.41 Beispielsweise können auch Laborabzüge oder die Verwendung zusätzlicher persönlicher Schutzausrüstungen erforderlich werden.

Auf folgende generell anzuwendende Schutzmaßnahmen wird hingewiesen42:

41 Siehe auch Kapitel 12 „Gefahrstoffe in biologischen Laboratorien“ dieser Schrift
42 Siehe Nr. 5.1 der TRBA 100

Gemäß § 14 Abs. 1 der BioStoffV ist eine Betriebsanweisung zu erstellen und bei Bedarf zu aktualisieren. Dies ist nicht notwendig, wenn ausschließlich Tätigkeiten mit biologischen Arbeitsstoffen der Risikogruppe 1 ohne sensibilisierende oder toxische Wirkung ausgeübt werden. Bei Tätigkeiten mit gentechnisch veränderten Organismen ist auch in der Sicherheitsstufe 1/Schutzstufe 1 in jedem Fall eine Betriebsanweisung zu erstellen.

Im Rahmen der Unterweisung soll auch eine allgemeine arbeitsmedizinische Beratung durchgeführt werden. Ein Erfordernis hierzu kann sich insbesondere durch die Verwendung sensibilisierend oder toxisch wirkender Biostoffe ergeben (siehe auch Nr. 6.1 Abs. 2 der TRBA 100 und Kapitel 15).

Für die Protokollierung von Unfällen ist die Projektleitung gentechnischer Arbeiten verantwortlich (§ 14 Abs. 1 Nr. 5 Gen-technik-Sicherheitsverordnung).

Nach Mutterschutzgesetz soll eine schwangere Frau der Unternehmensleitung ihre Schwangerschaft mitteilen, sobald sie weiß, dass sie schwanger ist. Ebenso soll eine stillende Frau die Unternehmensleitung so früh wie möglich darüber informieren, dass sie stillt (siehe auch Kapitel 16 „Beschäftigungsbeschränkungen“).

7.1 Schutzstufe 1

7.1.1 Allgemeines

Auch bei Tätigkeiten der Schutzstufe 1 muss ermittelt werden, ob von den verwendeten Biostoffen sensibilisierende, toxische oder sonstige die Gesundheit schädigende Wirkungen ausgehen. Diese können insbesondere
- in Forschungslaboratorien mit entsprechenden Untersuchungsschwerpunkten,
- in Umweltuntersuchungslaboratorien und
- bei der mikrobiologischen Qualitätssicherung, z. B. in der Lebensmittelindustrie eine entsprechende Rolle spielen.

Besitzen biologische Arbeitsstoffe der Risikogruppe 1 sensibilisierende oder toxische Wirkungen, sind zusätzlich zu den allgemeinen Hygienemaßnahmen der Schutzstufe 1 weitere geeignete Schutzmaßnahmen festzulegen. In der Regel handelt es sich auch um Maßnahmen, die der Minimierung oder Verhinderung des Kontakts zu biolo-
gischen Arbeitsstoffen und/oder der Entstehung von Bioaerosolen dienen, wie z. B. die Nutzung einer mikrobiologischen Sicherheitswerkbank (MSW).
(Siehe Kapitel 5.4 „Mikrobiologische Sicherheitswerkbanke (MSW)“).

Es ist zu berücksichtigen, dass nach erfolgter Inaktivierung von biologischen Arbeitsstoffen mit sensibilisierenden oder toxischen Wirkungen in der Regel das sensibilisierende oder toxische Potenzial erhalten bleiben kann. In diesen Fällen sind deshalb im Rahmen der Gefährdungsbeurteilung auch nach der Inaktivierung dieser biologischen Arbeitsstoffe die entsprechenden Schutzmaßnahmen umzusetzen.

7.1.2 Bauliche und technische Anforderungen

7.1.2.1 Laborräume

Laboratorien der Schutzstufe 1 sollen aus abgegrenzten, ausreichend großen Räumen bestehen. In Abhängigkeit von der Tätigkeit ist eine ausreichende Arbeitsfläche für jeden Mitarbeiter zu gewährleisten, um sicheres Arbeiten zu ermöglichen.

Oberflächen (Arbeitsflächen, Fußböden) sollen leicht zu reinigen und müssen beständig gegen die verwendeten Stoffe und Reinigungsmittel sein. Poröse oder saugfähige Materialien sind ungeeignet. Für das Arbeiten mit genetisch veränderten Organismen gelten die gleichen Anforderungen auch für die an die Arbeitsflächen angrenzenden Wandflächen. Es bestehen keine hygienischen Anforderungen an die Deckenkonstruktion. Eine Zwischendecke zur Verkleidung von Ver- und Entsorgungsinstallationen ist nicht erforderlich.

Abbildung 33: Typische Arbeitssituation

Abhängig von der Labornutzung sollen die Türen in Fluchtrichtung aufschlagen und aus Gründen des Personenschutzes mit einem Sichtfenster ausgestattet sein. Die erforderliche Laufbreite vorbeiführender Verkehrs- und Fluchtwege darf durch geöffnete Türen nicht eingeengt werden. Schiebetüren sind für Laboratorien nicht zulässig.

Mindestens ein Waschbecken mit Handwaschmittel- und Einmalhandtuchspender soll im Arbeitsbereich vorhanden sein. Mehrere unmittelbar aneinander angrenzende Laboratorien können als ein Arbeitsbereich angesehen werden.
7.1.2.2 Be- und Entlüftung

Aus Gründen der biologischen Sicherheit ist keine Raumluftechnische Anlage (RLT-Anlage) erforderlich (siehe Kapitel 5.2). Jedoch kann sich die Notwendigkeit einer RLT-Anlage oder von Abzügen aus der Verwendung von Gefahrstoffen (u. a. auch Desinfektionsmitteln) ergeben. Dann sind die lüftungstechnischen Schutzmaßnahmen der TRGS 526 bzw. DGUV Information 213-850 umzusetzen.

7.1.2.3 Technische Maßnahmen

7.1.3 Organisatorische Maßnahmen

Pipettierhilfen sind zu benutzen.

In Nummer 4.2.5 Absatz 6 der TRBA 250 sind die Anforderungen an durchstichsichere Abfallbehältnisse beschrieben. Ist im Rahmen von Tierexperimenten der Schutzstufe 1 der Einsatz spitzer und scharfer Instrumente geplant, so ist Anlage 2 der TRBA 120 zu berücksichtigen.

Laboratorien, die dem Gentechnikrecht unterliegen, erfordern weitere organisatorische Maßnahmen, siehe Kapitel 3 „Rechtsgrundlagen“.

7.1.3.1 Zugangsregelungen

Eine Kennzeichnung von Laboratorien wird allgemein empfohlen, z. B. mit dem Schriftzug „Mikrobiologisches Labor Schutzstufe 1“. Die Kennzeichnung einer gentechnischen Anlage als solche und entsprechend der Sicherheitsstufe der gentechnischen Arbeiten, für die sie zugelassen ist, ist zwingend vorgeschrieben (z. B. „Gentechnische Anlage Sicherheitsstufe 1“).
7.1.3.2 Ein- und Ausschleusen

7.1.3.3 Regeln für sicheres Arbeiten

Bei allen Tätigkeiten soll darauf geachtet werden, dass eine Aerosolbildung so weit wie möglich vermieden wird. Das trifft vor allem zu für das Umfüllen, Zentrifugieren, Schütteln, Arbeiten mit Ultraschall, Rühren, Hochdruckpressen, Pipettieren und Beimpfen.

Die Grundregeln guter mikrobiologischer Technik (GMT) (siehe Anhang 1 dieser Schrift) sowie gegebenenfalls weitere betriebliche Vorgaben (z. B. Laborordnung) sind zu beachten. Die Vorgesetzten dürfen regelwidriges Verhalten nicht dulden.

7.1.3.4 Hygiene

Im Regelbetrieb reicht die Reinigung der Laborräume aus, die routinemäßige Desinfektion würde ein Übermaß an Chemikalienaustrag bedeuten. Dieses ist aufgrund der Gefährdungsbeurteilung durch Organismen der Risikogruppe 1 nicht angezeigt.

Das Gentechnikrecht fordert in Anhang III der Gentechnik-Sicherheitsverordnung, dass für den Fall des Austretens von gentechnisch veränderten Organismen wirksame Desinfektionsmittel und spezifische Desinfektionsverfahren zur Verfügung stehen müssen.

Nach § 9 Abs. 3 Nr. 7 Biostoffverordnung hat die Unternehmensleitung sicherzustellen, dass die Beschäftigten in Arbeitsbereichen, in denen Biostoffe auftreten können, keine Nahrungs- und Genussmittel lagern und zu sich nehmen. Hierzu sind vor Aufnahme der Tätigkeiten gesonderte, leicht erreichbare Bereiche einzurichten, die nicht mit persönlichen Schutzausrüstungen einschließlich Schutzkleidung betreten werden dürfen. Es soll gewährleistet werden, dass die Beschäftigten ohne Beeinträchtigung ihrer Gesundheit essen und trinken können.

7.1.3.5 Entsorgung

Flüssige und feste Abfälle, die biologische Arbeitsstoffe enthalten, sind sachgerecht zu sammeln und zu entsorgen. Sie können ohne Vorbehandlung entsorgt werden, wenn andere Vorschriften (z. B. Wasser-, Abfall- oder Gentechnikrecht) dem nicht entgegenstehen.

Gentechnisch veränderte Organismen (GVO) müssen gemäß den Vorgaben des § 13 Abs. 2a Gentechnik-Sicherheitsverordnung entsprechend behandelt werden.
In Abhängigkeit von den spezifischen Eigenschaften der eingesetzten biologischen Arbeitsstoffe sind bei Bio-
stoffen mit sensibilisierender oder toxischer Wirkung wirksame Inaktivierung- und Reinigungsmaßnahmen in einem Hygieneplan (siehe Kapitel 9.4) festzulegen.

Nach Gentechnik-Sicherheitsverordnung muss ein Autoklav (innerhalb des Betriebsgeländes) bei gentechnischen Arbei-
ten ab der Sicherheitsstufe 1 zwingend vorhanden sein. Der innerbetriebliche Transport muss in bruchsicheren und fest verschlossenen Behältnissen erfolgen.

7.1.3.6 Instandhaltung

Zum Schutz vor Biostoffen der Risikogruppe 1 ohne sensibilisierende oder toxische Wirkung sind bei der Instandhaltung keine besonderen Maßnahmen erforderlich. Werden Tätigkeiten mit Biostoffen mit sensibilisierender oder toxischer Wir-
kung durchgeführt, müssen in Abhängigkeit von der ermittelten Gefährdung vor Wartungs-, Instandsetzungs- und Ände-
 rungsarbeiten an kontaminierten Geräten oder Einrichtungen die notwendigen Maßnahmen veranlasst werden, die eine sichere Instandhaltung gewährleisten.

7.1.4 Persönliche Schutzausrüstungen

Im Schutzstufenbereich müssen Laborkittel oder andere Schutzkleidung getra-
gen werden. Benutzte Laborkittel sind getrennt von Straßenkleidung aufzubewah-
ren. Andere Gefährdungen, z. B. Tätigkeiten mit Gefahrstoffen oder UV-Licht, machen in der Regel weitere persönliche Schutzausrüstungen, insbesondere Schutz-
handschuhe und Schutzbrille oder Gesichtsschild, erforderlich. Gegebenenfalls ist zusätzliche persönliche Schutzausrüstung notwendig, wie z. B. Schutzhand-
schuhe oder Atemschutz.
Dies gilt insbesondere auch bei Tätigkeiten mit Biostoffen, die sensibilisierende oder toxische Wirkung haben können.

Persönliche Schutzausrüstungen dürfen nicht außerhalb des Laborbereichs getragen werden, z. B. in Casinos/Mensälen/Kantinen oder Pausenräumen. Es sollen geeignete Aufbewahrungs möglichkeiten (z. B. Spinde, Hakenleisten) im Bereich der Umkleidezone vorhanden sein.

7.2 Schutzstufe 2

7.2.1 Allgemeines
In der höheren Schutzstufe können auch Arbeiten der niedrigeren Schutzstufe durchgeführt werden. Das bedeutet, dass z. B. in Schutzstufe 2 auch Tätigkeiten der Schutzstufe 1 durchgeführt werden können. Ein Schutzstufe 2-Laboratorium ist also nicht ausschließlich auf Tätigkeiten mit Biostoffen der Risikogruppe 2 beschränkt.

Der Risikogruppe 2 zugeordnete Biostoffe können bei den Beschäftigten Krankheiten hervorrufen. Das Risiko ist unter Berücksichtigung der Infektiosität, der Pathogenität und des Vorhandenseins der technischen, organisatorischen und/ oder therapeutischen Maßnahmen und bei Beachtung der allgemeinen Hygieneregeln für die Beschäftigten und für die Bevölkerung als gering einzustufen.
Bei Tätigkeiten mit Biostoffen der Risikogruppe 2 sind die Arbeitsverfahren und die technischen Maßnahmen grundsätzlich so zu gestalten, dass Biostoffe am Arbeitsplatz nicht frei werden. Offener Umgang mit Biostoffen der Risikogruppe 2 ist nur in einer MSW der Klasse I oder II zulässig (kein Laborabzug!), sofern bei den Tätigkeiten mit Gefährdungen durch Spritzer oder Aerosolbildung zu rechnen ist.

Die erstmalige Aufnahme einer gezielten Tätigkeit mit Biostoffen der Risikogruppe 2 muss bei der zuständigen Behörde angezeigt werden.

7.2.2 Bauliche und technische Anforderungen

7.2.2.1 Laborräume

Laboratorien müssen aus ausreichend großen Räumen bestehen, die gegenüber anderen Räumen und Nutzungsflächen baulich abgegrenzt sind, in denen keine Tätigkeiten mit biologischen Arbeitsstoffen ausgeführt werden.

Bei gentechnischen Arbeiten sollen Ablaufbecken in Arbeitsflächen mit einer Aufkantung versehen sein (Anhang III A II Nr. 16 der Gentechnik-Sicherheitsverordnung).

Abbildung 36: Laborkennzeichnung für Schutzstufe 2

43 In der Regel R9 gemäß Anhang 2 Nr. 12.13 der ASR A1.5/1.2
44 Siehe Nummer 6.2.4 der TRGS 526

Der Standort von Augennotduschen muss durch das Rettungszeichen „Augenspüleinrichtung“ gekennzeichnet sein und der Zugang ist ständig freizuhalten (Nr. 6.6.2 Abs. 2 der TRGS 526). Die Augennotduschen sollen innerhalb von 5 Sekunden erreicht werden können. Sie müssen regelmäßig funktionsgeprüft und gereinigt werden.

7.2.2.2 Be- und Entlüftung

Siehe hierzu auch Kapitel 7.1.2.2. Da während der Arbeiten Fenster und Türen geschlossen zu halten sind, ist eine Raumlufttechnische Anlage erforderlich. Bei Tätigkeiten mit Biostoffen der Risikogruppe 2 muss die Abluft der lüftungstechnischen Anlage nicht HEPA-filtriert werden. Abluft von lüftungstechnischen Einrichtungen an Laborgeräten muss HEPA-filtriert werden, auch wenn sie an ein Fortlüftungssystem angeschlossen sind.

7.2.2.3 Technische Maßnahmen

Generell sind Geräte zu verwenden, die keine Bioaerosole freisetzen (z. B. Zentrifugen mit abgedichteten Rotoren oder Zentrifugenbechern).

45 Siehe Nr. 6.6.2.2 der DGUV Information 213-850
Ein ausreichend dimensionierter und für die Anforderungen der Inaktivierung geeigneter Autoklav oder eine vergleichbare Einrichtung (z. B. thermische Desinfektionsanlage) soll im selben Gebäude vorhanden sein (siehe auch Kapitel 5.11 „Autoklaven (Dampfsterilisatoren)“). Für gentechnische Arbeiten ist dies nach Gentechnik-Sicherheitsverordnung verpflichtend. Bei nicht gentechnischen Arbeiten können alternativ andere anerkannte Verfahren zur Inaktivierung verwendet werden.

In gentechnischen Anlagen wird behördlicherseits gefordert, dass der Übergang vom Fußboden zu fest installierten Möbeln sowie von diesen zu Wänden abgedichtet sein muss („Aufkantung“).

Für sicherheitsrelevante Einrichtungen (z. B. Autoklaven, Lüftungsanlagen, Notruf- und Überwachungseinrichtungen) wird empfohlen, eine Notstromversorgung vorzusehen (Anhang II Nr. 21 Biostoffverordnung).

7.2.3 Organisatorische Maßnahmen

7.2.3.1 Zugangsregelungen

7.2.3.2 Ein- und Ausschleusen

Kontaminierte Geräte müssen, bevor sie aus dem Laboratorium gebracht werden, desinfiziert oder gefahrlos zur Desinfektions- oder Sterilisationseinrichtung transportiert werden. Hierzu sind erforderlichenfalls geeignete Behältnisse zu verwenden (siehe Kapitel 7.2.3.3).

Für Geräte, die z. B. zur Reparatur den Arbeitsbereich verlassen müssen, muss eine schriftliche Freigabe (Erklärung zur Dekontamination) gegeben werden (Musterfreigabeschein im Anhang 4). Diese Erklärung muss der Werkstatt bzw. dem Reparaturbetrieb zur Verfügung gestellt werden (siehe Kapitel 7.2.3.6).

7.2.3.3 Regeln für sicheres Arbeiten

Bei allen Tätigkeiten mit Biostoffen sind die „Grundregeln guter mikrobiologischer Technik (GMT)“ einzuhalten (siehe Anhang 1).

Fenster und Türen sind während der Tätigkeiten mit biologischen Arbeitsstoffen geschlossen zu halten.

Biologische Arbeitsstoffe der Risikogruppe 2 sind in dicht verschlossenen Behältnissen sicher aufzubewahren. Handelt es sich dabei um die in der Verordnung (EG) Nr. 388/2012 gelisteten humanpathogenen biologischen Arbeitsstoffe, sind sie unter Verschluss zu halten.

Bei gleichzeitiger Verwendung von Biostoffen der Risikogruppe 1 empfiehlt sich eine getrennte Lagerung bzw. Aufbewahrung.

Werden biologische Arbeitsstoffe oder Material, welches biologische Arbeitsstoffe enthält oder enthalten kann, außerhalb des Schutzstufenbereichs innerbetrieblich transportiert, muss dies in geschlossenen, formstabilen, bruchsicheren, flüssigkeitsdichten und von außen desinfizierbaren Gefäßen erfolgen, die dauerhaft beschriftbar bzw. etikettierbar sind. Sie dürfen sich durch äußere Einwirkungen nicht versehentlich öffnen lassen.

Beispiele für Transportbehälter sind Chemikalienbehälter mit Spanndeckelring oder mit einem Schraubverschluss mit Dich tung. Zum Etikettieren sollten selbstklebende Etiketten verwendet werden, die auch bei Durchfeuchtung lesbar bleiben und gefriergeeignet sind.

Abbildung 40: Zusammensetzung eines Spill-Kits (auch verwendbar für höhere Schutzstufen)

Abbildung 41: Für Schutzstufe 2 geeignetes Gefäß für den innerbetrieblichen Transpor
7.2.3.4 Hygiene

Für Tätigkeiten mit Biostoffen der Risikogruppe 2 ist ein Hygieneplan zu erstellen (siehe Kapitel 9.4 und Anhang 6).

7.2.3.5 Entsorgung

Kontaminierte flüssige und feste Abfälle (z. B. Kulturen, Gewebe, Proben mit Körperflüssigkeiten) sind in geeig neteten verschließbaren Behältern sicher zu sammeln (siehe auch Abschnitt zum innerbetrieblichen Transport in Kapitel 7.2.3.3) und einer für diese Abfälle geeigneten Inaktivierung zuzuführen.

Für die Inaktivierung sind errregertragene nachweislich wirksame physikalische oder chemische Verfahren einzusetzen. Thermische Verfahren sind gegenüber chemischen Desinfektionsverfahren zu bevorzugen (siehe auch Gentechnik-Sicherheitsverordnung). Diese Verfahren sind jedoch bei nachgewiesener Wirksamkeit ebenfalls anwendbar (zu den Inaktivierungsverfahren siehe Kapitel 10 „Sterilisation, Desinfektion, Dekontamination“).

Auch eine sachgerechte Auftragsentsorgung ist für kontaminierte Abfälle aus Bereichen der Schutzstufe 2 akzeptabel (nicht für Abfälle aus gentechnischen S 2-Projekten). Handwaschwasser oder vergleichbare Abwässer sind in der Regel nicht so belastet, dass sie vor der endgültigen Entsorgung inaktiviert werden müssen.

7.2.3.6 Instandhaltung

Vor Instandsetzungsarbeiten sind die Arbeitsbereiche einschließlich der zu wartenden Geräte und Einrichtungen vom Laborpersonal zu desinfizieren oder die Desinfektion zu beauftragen. Dies gilt auch für Geräte/Arbeitsmittel, die zur Instandsetzung weggegeben werden. Sofern aufgrund innerbetrieblicher Vorgaben ein Betriebsbuch geführt wird, sind diese Maßnahmen darin zu vermerken.

7.2.4 Persönliche Schutzausrüstungen

Persönliche Schutzausrüstung einschließlich geeigneter Schutzkleidung ist entsprechend der Gefährdungsbeurteilung zur Verfügung zu stellen und durch die Beschäftigten zu tragen.

Wenn mit Spritzern ins Gesicht zu rechnen ist, ist ein Gesichtsschutz (z. B. Schutzbrille, Maske oder Gesichtsschild) anzuwenden.

Der hierzu erforderliche und geeignete Platz (z. B. Hakenleiste, Spind, Schuhdepot) ist bei der Planung zu berücksichtigen.

Die Reinigung der Schutzkleidung und deren Instandhaltung sind vom Betreiber regelmäßig und im Bedarfsfall (z. B. bei akuter Kontamination) durchzuführen (siehe Anhang III A II Nr. 6 der Gentechnik-Sicherheitsverordnung).

Auch für Laborfremde und Wartungspersonal sind persönliche Schutzausrüstungen bedarfsgerecht entsprechend der Gefährdungsbeurteilung bereitzustellen.

7.2.5 Notfall

Siehe hierzu Kapitel 14 „Maßnahmen in Notfällen und bei Störungen“ dieser Schrift.

7.3 Schutzstufe 3

7.3.1 Allgemeines

Die der Risikogruppe 3 und 3(**) zugeordneten Biostoffe können beim Menschen schwere Krankheiten hervorrufen und eine ernste Gefahr für Beschäftigte, aber auch für die Umwelt darstellen.

Die erstmalige Aufnahme von gezielten und nicht gezielten Tätigkeiten mit Biostoffen der Risikogruppe 3(**) muss bei der zuständigen Behörde angezeigt werden.

Gezielte und nicht gezielte Tätigkeiten der Schutzstufe 3 mit Biostoffen der Risikogruppe 3 sind grundsätzlich erlaubnispflichtig, und zwar nach § 44 Infektionsschutzgesetz und § 15 Abs. 1 Biotoffenverordnung, beim Vorliegen von Tierseuchenerreger nach § 2 Tierseuchenerreger-Verordnung, sowie stets genehmigungspflichtig im Falle von GVO nach § 8 Abs. 3 Nr. 2 Gentechnikgesetz. Dabei berät eine fachkundige zuverlässige Person nach § 10 Abs. 2 Biostoffverordnung bei der Gefährdungsbeurteilung und sonstigen sicherheitstechnisch relevanten Fragestellungen und überprüft die Wirksamkeit und Einhaltung der Schutzmaßnahmen.

7.3.2 Tätigkeiten mit Biostoffen der Risikogruppe 3 (**)

Bei einer Reihe von Biostoffen, die in Anhang III der Richtlinie 2000/54/EG in Risikogruppe 3 eingestuft und mit zwei Sternchen „**“ versehen sind, ist das Infektionsrisiko für die Beschäftigten begrenzt, da eine Infizierung über den Luftweg normalerweise nicht erfolgen kann.

Zum Schutz der Beschäftigten sind bei Tätigkeiten mit Biostoffen der Risikogruppe 3 (**) zusätzlich zu den Maßnahmen der Schutzstufe 2 (siehe Kapitel 7.2) die nachfolgend beschriebenen Anforderungen/Maßnahmen einzuhalten.

7.3.2.1 Bauliche und technische Anforderungen

Im Schutzstufenbereich anfallende Abwässer von Waschbecken und Duschen sind einer thermischen Nachbehandlung zu unterziehen. Alternativ können auch andere validierte Inaktivierungsverfahren eingesetzt werden. Auf die Nachbehandlung kann verzichtet werden, wenn die Gefährdungsbeurteilung ergeben hat, dass außerhalb des Schutzstufenbereichs keine Gefährdung durch die anfallenden Abwässer gegeben ist.

Für die Kommunikation zwischen Laboratorium und Außenbereich muss eine geeignete Einrichtung vorhanden sein.

Die Sicherheitsbeleuchtung im Schutzstufenbereich muss so ausgelegt sein, dass ein sicheres Einstellen der Arbeiten bei Stromausfall möglich ist. Der Schutzstufenbereich muss darüber hinaus über eine eigene Ausrüstung (Laborgerätschaften) verfügen.

7.3.2.2 Organisatorische Maßnahmen

Der Zugang zum Schutzstufenbereich ist vom Verantwortlichen auf die Personen zu beschränken, die für die Durchführung der Tätigkeiten erforderlich sind. Eine Zugangskontrolle ist notwendig. In begründeten Einzelfällen genehmigt der Verantwortliche den Zugang anderer Personen (z. B. Servicepersonal) unter fachkundiger Aufsicht.

Im Rahmen der Gefährdungsbeurteilung ist festzulegen, unter welchen Bedingungen Alleinarbeit möglich ist.

Gegebenenfalls ist die Wirksamkeit der getroffenen Maßnahmen zu validieren.

47 Siehe Literaturverzeichnis Abschnitt 1
Für spezielle Tätigkeiten (u. a. mit schneidenden und spitzen Instrumenten) mit erhöhter Gefährdung sind zusätzlich zur Betriebsanweisung Arbeitsanweisungen zu erstellen.

7.3.2.3 Persönliche Schutzausrüstungen

Die Schutzkleidung umfasst mindestens einen Rückenschlusskittel mit Kennzeichnung (z. B. farblich abgesetzt zu den in anderen Schutzstufenbereichen getragenen Schutzkitteln), geschlossene Schuhe und geeignete Schutzhandschuhe (und mit einem AQL-Wert ≤ 1,5). In Abhängigkeit von Ergebnis der Gefährdungsbeurteilung können je nach Tätigkeit auch geeigneter Mund-Nasen-Schutz (Spritz- und Berührungsschutz) und Schutzbrille (Spritzschutz) erforderlich sein.

7.3.3 Tätigkeiten mit Biostoffen der Risikogruppe 3

Die in diesem Kapitel aufgeführten Schutzmaßnahmen müssen bei Tätigkeiten mit Biostoffen der Risikogruppe 3 in Laboratorien der Schutzstufe 3 eingehalten werden.

7.3.3.1 Bauliche und technische Anforderungen

7.3.3.1.1 Laborräume

Laboratorien, in denen Tätigkeiten der Schutzstufe 3 stattfinden, sind gegenüber anderen Bereichen durch eine Schleuse mit zwei selbstschließenden und gegeneinander verriegelten Türen mit Sichtfenster zu trennen. Die Schleuse sollte entsprechend der Nutzung des Schutzstufenbereichs ausreichend dimensioniert sein. Für die Schleuse empfiehlt sich die Verwendung von in Fluchtrichtung aufschlagenden Edelstahltüren mit einer Gummidichtung, um den Unterdruck (siehe Abschnitt 7.3.3.1.2) besser aufrecht erhalten zu können. Die Türen sollten mit einer Panikfunktion für Flucht im Gefahrenfall ausgerüstet sein.

Für die Desinfektion der Hände muss in der Schleuse ein ohne Handberührung bedienbarer Desinfektionsmittelspender vorhanden sein. Ein Handwaschbecken mit Handwaschmittel- und Einmalhandtuchspender, dessen Wasserarmatur handberührungslos eingerichtet ist, muss vorhanden sein.

Nach Gentechnik-Sicherheitsverordnung kann in begründeten Einzelfällen auf eine Schleuse verzichtet werden. Falls erforderlich, ist in der Schleuse eine Dusche einzurichten (Anhang III A III Stufe 3 Nr. 3 Gentechnik-Sicherheitsverordnung).

Hautschutz- und Pflegemittel müssen außerhalb des Schutzstufenbereichs zur Verfügung stehen. Die Hände sind nach Hautschutzplan zu pflegen.
Für sicherheitsrelevante Einrichtungen wie Lüftungsanlagen, Notruf- und Überwachungseinrichtungen ist eine Notstromversorgung einzurichten.

Eine Sicherheitsbeleuchtung muss vorhanden sein. Sie ist so auszulegen, dass ein sicheres Einstellen der Arbeiten bei Stromausfall möglich ist.

Die Räume des Schutzstufenbereichs sowie des kontaminierten Teils der raumlufttechnischen Anlage bis einschließlich der ersten HEPA-Filterstufe müssen zum Zweck der Begasung abdichtbar sein.

Die geforderte technische Dichtheit soll eine Gefährdung des Umfeldes ausschließen, z. B. bei einer Begasung nach TRGS 522 „Raumdesinfektion mit Formaldehyd“.

Sichtverbindungen (Fenster) nach außen müssen dicht sein und dürfen nicht zu öffnen sein (Festinstallation ohne Schließmechanismus). Im Falle der Reparatur und des Austausches muss es die Möglichkeit geben, das Labor gegenüber dem restlichen Containment singular herunterzufahren („shutdown“) und abzudichten. Ein Sichtfenster oder eine vergleichbare Vorrichtung zur Einsicht in den Arbeitsbereich sind zum Personenschutz erforderlich und dürfen nicht durch z. B. Poster oder Aushänge zugeklebt werden. Sind im Schutzstufenbereich mehrere Laboratorien vorhanden, so müssen auch deren Türen mit Sichtfenster ausgestattet sein und in Fluchtrichtung aufschlagen. Aufgrund des Implosionsschutzes sollten die Fenster aus Sicherheitsglas bestehen.

Oberflächen (Arbeitsflächen, Wände und Fußböden) müssen möglichst fugenlos sowie wasserundurchlässig, leicht zu reinigen und beständig gegenüber den eingesetzten Desinfektionsmitteln, Begasungsmitteln und sonstigen Chemikalien sein.

Für die Ausführung der Wände empfiehlt sich zur Überbrückung von eventuell auftretenden Haarrissen eine Glasfasertapete mit desinfektionsmittelfestem Anstrich oder eine desinfektionsmitteldesto Beschichtung. Andere desinfektionsmittel- feste Materialien sind allerdings ebenfalls zulässig.

Von abgehängten Decken ist abzuraten, da sie die Zugänglichkeit zu technischen Einrichtungen erschweren und sie in Hinsicht auf eine Begasung Toträume bilden.

Für die Kommunikation zwischen Labor und Außenbereich muss eine geeignete Einrichtung vorhanden sein (siehe auch Kapitel 7.3.3.2.1).

7.3.3.2 Be- und Entlüftung

Im Schutzstufenbereich S 3 ist ein ständiger, kontrollierter Unterdruck aufrecht zu erhalten. Der Unterdruck sollte mindestens 30 Pa betragen. Zwischen Schleuse und Laboratorium muss ein Druckgefälle herrschen. Der vorhandene Unterdruck muss durch die Labornutzer - sinnvollerweise auch von innen - leicht überprüfbar sein und durch einen Alarmgeber mit optischem und akustischem Signal überwacht werden.

7.3.3.3 Technische Maßnahmen

Für größere Laborgeräte müssen gleichwertige physikalische Sicherheitseinrichtungen, z. B. Abzüge, vorhanden sein, bei denen ein Luftstrom von dem oder der Beschäftigten zur Arbeitsstelle hin gerichtet ist und deren Abluft vor Rückführung in den Arbeitsraum durch einen HEPA-Filter geführt wird. Es muss sichergestellt sein, dass das Gerät den laminaren Luftstrom nicht so stört und das Rückhaltevermögen beeinträchtigt wird. Eine Alternative ist die Benutzung von Geräten, bei denen keine Aerosole freigesetzt werden (z. B. Ultrazentrifugen mit aerosoldichten Rotoren oder Hochleistungsschwebstofffiltern in der Vakuumabluftstrecke, Schüttelinkubatoren mit Magnetantrieb statt Antriebswelle). Siehe auch Hinweise unter Kapitel 7.3.3.2.3 „Regeln für sicheres Arbeiten“.

Der Schutzstufenbereich muss über eine eigene Ausrüstung (Laborgärätschaften) verfügen. Ein Autoklav muss im Schutzstufenbereich (Laboratorium) vorhanden sein.

7.3.3.2 Organisatorische Maßnahmen

7.3.3.2.1 Zugangsregelungen

Die Kennzeichnung mit „BIO III“ kann von der örtlichen Feuerwehr gefordert werden.

Der Zugang zum Schutzstufenbereich ist vom Verantwortlichen auf die Personen zu beschränken, die zur Durchführung der Tätigkeiten berechtigt sind. Eine Zugangskontrolle ist erforderlich. Elektronische Zugangskontrollen sind heutzutage üblich.

In begründeten Einzelfällen genehmigt der Verantwortliche den Zugang anderer Personen (z. B. Servicepersonal) unter fachkundiger Aufsicht. Letztlich liegt es im Ermessen der Unternehmensleitung, weitere Kriterien der Zuverlässigkeit zu definieren.

Bei Tätigkeiten mit biologischen Arbeitsstoffen, die bei Missbrauch erhebliche Schadwirkung für andere Personen beinhalten können, kann eine Sicherheitsüberprüfung des Laborpersonals angezeigt sein (siehe dazu auch Kapitel 4.10 “Biosecurity in mikrobiologischen und biotechnischen Laboratorien”).

Tätigkeiten in Laboratorien der Schutzstufe 3 dürfen nur von zuverlässigen und fachkundigen Beschäftigten ausgeübt werden, die anhand von Arbeitsanweisungen eingewiesen und geschult sind.

Nach § 7 Abs. 3 der Biostoffverordnung hat die Unternehmensleitung ein Verzeichnis über die Beschäftigten zu führen, die Tätigkeiten der Schutzstufe 3 ausüben. In dem Verzeichnis sind die Art der Tätigkeiten und die vorkommenden Biostoffe sowie aufgetretene Unfälle und Betriebsstörungen anzugeben. Die Unterlagen sind personenbezogen für den Zeitraum von mindestens zehn Jahren nach Beendigung der Tätigkeit aufzubewahren.

Insbesondere bei Alleinarbeit ist eine von innen zu betätigte Notrufeinrichtung oder eine vergleichbare Vorrichtung (z. B. Telefon, Funkgeräte, Personen-Notsignal-Anlagen) erforderlich. Gemäß Anhang III Stufe 3 Nr. 8 Gen-technik-Sicherheitsverordnung ist Einzelarbeit nur dann gestattet, wenn eine von innen zu betätige Armarmanlage vorhanden ist.

7.3.3.2.2 Ein- und Ausschleusen

Geräte und Gegenstände müssen vor dem Ausschleusen dekontaminiert werden. Es muss eine schriftliche Freigabe (Erklärung zur Dekontamination, siehe Musterfreigabeschein in Anhang 4) erfolgen, bevor sie z. B. zur Reparatur abgegeben werden (siehe auch Kapitel 7.3.3.2.6).

—

49 Siehe hierzu auch DGUV Information 212-139 „Notrufmöglichkeiten für allein arbeitende Personen“
Für den außerbetrieblichen Transport sind die Vorschriften des Gefahrgutrechts der Klasse 6.2 (in der Regel Kategorie A) zu beachten (siehe dazu auch Kapitel 11 „Transport und Versand“).

7.3.3.2.3 Regeln für sicheres Arbeiten

Für alle Tätigkeiten, die mit besonderer Infektionsgefährdung verbunden sind, müssen Arbeitsanweisungen vorliegen.

Biologische Arbeitsstoffe der Risikogruppe 3 sind geschützt vor unbefugtem Zugriff im Schutzstufenbereich zu lagern. Es muss gewährleistet sein, dass nur berechtigte Personen Zugriff haben. Im Falle von humanpathogenen biologischen Arbeitsstoffen, die in der EU-Verordnung Nr. 388/2012 über die Kontrolle der Ausfuhr von Gütern mit doppelter Verwendungszweck gelistet sind, muss die Lagerung unter Verschluss erfolgen. Es sind Maßnahmen festzulegen, die einzuleiten sind, falls die getroffenen Vorkehrungen gegen Diebstahl und sonstigen Missbrauch nicht gegriffen haben.

Bei Labortätigkeiten entstehende kontamierte Abluft muss so behandelt werden, dass das Freiwerden von Biostoffen verhindert wird.

![Abbildung 46: Sicherheitsskalpell zum einmaligen Gebrauch](image1)
![Abbildung 47: Sicherheitskanüle](image2)
7.3.3.4 Hygiene

Ein Handwaschbecken darf im Laboratorium nur vorhanden sein, wenn die Nachbehandlung der Abwässer (gemäß Kapitel 5.3 und Abschnitt 7.3.3.2.5) gewährleistet ist.

Im Laboratorium sind geeignete Möglichkeiten zur Augenspülung vorzuhalten. Augenspülflaschen nach DIN 12930 sind hier aus infektionspräventiven Gründen einer festinstallierten, regelmäßig zuprüfenden Augendusche vorzuziehen.

Hautschutz- und Pflegemittel müssen außerhalb des Schutzstufenbereichs bzw. Laborbereiches zur Verfügung stehen. Die Hände sind nach Hautschutzplan (siehe Anhang 7) zu pflegen.

7.3.3.5 Entsorgung

Bei bestimmungsgemäßer Betrieb und unter Beachtung der organisatorischen Sicherheitsmaßnahmen fallen in der Schleuse keine kontaminierten Abwässer an. In Schleusen vorhandene Handwaschbecken dienen der Händehygiene, jedoch nicht zur Desinfektion.

7.3.3.6 Instandhaltung

Vor Prüf-, Instandsetzungs- und Änderungsarbeiten an kontaminierten Geräten, Einrichtungen oder ggf. an Räumen des Schutzstufenbereichs sind der Umfang und die Art der Dekontamination im Rahmen der Gefährdungsbeurteilung festzulegen und diese durch das Laborpersonal durchzuführen oder zu veranlassen. Die verantwortliche Person hat eine schriftliche Arbeitsfreigabe zu erteilen. Ist eine vollständige Dekontamination nicht möglich, sind die zusätzlich erforderlichen Schutzmaßnahmen in einer Arbeitsanweisung tätigkeitsbezogen schriftlich festzulegen. Die Arbeiten haben unter Aufsicht zu erfolgen.

50 Ersetzt durch DIN EN 15154-4:2009-07
Die für das Servicepersonal erforderlichen arbeitsmedizinischen Präventionsmaßnahmen nach Kapitel 15 dieser Schrift sind im Rahmen der zuvor durchgeführten Gefährdungsbeurteilung festzulegen.

Die Art des Ausbaus und der Dekontamination von HEPA-Filtern sind in der Gefährdungsbeurteilung festzulegen. Der Ausbau muss so erfolgen, dass eine Gefährdung des Wartungspersonals und anderer Personen ausgeschlossen werden kann.

Folgende Verfahren können beim Filterwechsel bei Raumlufttechnischen Anlagen (RLT-Anlagen) und mikrobiologischen Sicherheitswerkbänken (MSW) eingesetzt werden:

1. **Sack-in-Sack Wechselsystem (RLT-Anlagen)**

2. **Begasung mit Formaldehyd (MSW und RLT-Anlagen)**
 Die HEPA-Filter werden in situ mit Formaldehyd (Raumdesinfektionsverfahren entsprechend der Liste der vom Robert Koch-Institut (RKI) geprüften und anerkannten Desinfektionsmittel und -verfahren der TRGS 522) begast, um die biologische Belastung zu reduzieren. Anschließend werden die Filter, wie unter 1. beschrieben, dekontaminiert.

3. **Begasung mit Wasserstoffperoxid (MSW und RLT-Anlagen)**

7.3.3.3 Persönliche Schutzausrüstungen

In der Schleuse ist die für die Schutzstufe 3 vorgesehene Schutzkleidung und persönliche Schutzausrüstung anzulegen und nach Beendigung der Tätigkeit abzulegen. Diese umfassen mindestens einen Rückenschlusskittel mit Kennzeichnung, (z. B. farblich abgesetzt zu den in anderen Schutzstufenbereichen getragenen Schutzbekleidungen), geschlossene Schuhe und geeignete Schutzhandschuhe (und mit einem AQL-Wert ≤ 1.5). In Abhängigkeit vom Ergebnis der Gefährdungsbeurteilung können auch Mundschutz (Berührungsschutz) oder Atemschutz sowie Augenschutz (Spritzschutz) erforderlich sein. Durch Einrichtung entsprechender Bereiche in der Schleuse ist zu gewährleisten, dass getragene Schutzkleidung getrennt von sonstiger Laborkleidung aufbewahrt wird. Für benutzte, zur Desinfektion und Reinigung vorgesehene Schutzkleidung sowie für gebrauchte persönliche Schutzausrüstung sind geeignete, dekontaminierbare Sammelbehälter in der Schleuse bereit zu stellen und von den Beschäftigten zu nutzen. Die Schutzkleidung ist vor der Reinigung oder Beseitigung zu sterilisieren.

An Händen und Unterarmen dürfen keine Schmuckstücke, Uhren und Eheringe getragen werden, um eine effiziente hygienische Händedesinfektion zu gewährleisten und die Schutzfunktion der Handschuhe zu gewährleisten. Fingernägel müssen kurzgeschnitten sein.

7.3.3.4 Notfall

In einem innerbetrieblichen (Notfall-)Plan ist zu regeln, welche Maßnahmen zur Abwendung von Gefahren zu ergreifen sind, die beim Versagen einer Einschließungsmaßnahme durch die Freisetzung biologischer Arbeitsstoffe auftreten können. Der Plan muss neben Informationen zu den möglichen spezifischen Gefahren auch die Namen der für die Durchführung der Rettungsmaßnahmen zuständigen Personen enthalten. (Siehe auch Kapitel 14 „Maßnahmen in Notfällen und bei Störungen“).

7.4 Schutzstufe 4

7.4.1 Allgemeines

Laboratorien der Schutzstufe 4 sind für Tätigkeiten mit Biostoffen der Risikogruppe 4 ausgerüstet. Zum Schutz der Beschäftigten, der Bevölkerung und der Umwelt erfordert die Schutzstufe 4 (im Vergleich zur Schutzstufe 3) weitere sehr aufwändige bauliche, technische und organisatorische Maßnahmen. Im Folgenden sind nur die wesentlichen Elemente genannt.52

Beschäftigte müssen bei Tätigkeiten in einem Laboratorium der Schutzstufe 4 durch einen fremdbelüfteten Vollschutzanzug geschützt sein, wobei die Atemluftversorgung durch eine autarke Luftzuleitung erfolgen muss (siehe auch Kapitel 7.4.4). Die offene Handhabung von Erregern kann in MSW der Klasse II erfolgen.

7.4.2 Bauliche und technische Anforderungen

Die Laboratorien verfügen grundsätzlich über ein 4-kammeriges Schleusensystem. Das Schleusensystem muss über folgende Komponenten verfügen:
- Äußere Schleusenkammer zum Ausziehen der Straßenkleidung und Anlegen von Labor-Unterbekleidung,
- Personendusche mit Platz zum Ablegen der Unterbekleidung beim Ausschleusen,
- Anzugraum zum An- und Ablegen der geeigneten Vollschutzanzüge und innere Schleusenkammer mit der Chemikaliendusche zur Dekontamination der Vollschutzanzüge.

7.4.2.1 Laborräume

Die Türen des Schleusensystems müssen so dicht sein, dass keine Möglichkeit besteht, dass biologische Arbeitsstoffe entweichen können. Sie müssen gegeneinander verriegelt und selbstschließend sein, so dass das gleichzeitige Öffnen nicht möglich ist.

52 Siehe Nr. 5.5 der TRBA 100

Alle sicherheitsrelevanten Einrichtungen sind redundant auszuführen. Für alle sicherheitsrelevanten Einrichtungen wie z. B. Atemwegluftversorgungssysteme der fremdblütteten (Voll-)Schutzanzüge, Lüftungsanlage und Überwachungseinrichtungen ist eine unterbrechungsfreie Notstromversorgung einzurichten.

7.4.2.2 Be- und Entlüftung

müßten gasdicht und für eine Begasung geeignet sein. Die Kanalwege sollten möglichst kurz sein und unmittelbar am Schutzstufeneinrichtung angrenzen oder sich im Schutzstufenbereich befinden.

Der Schutzstufenbereich muss zum Zweck der Enddesinfektion sicher begassbar sein. Es darf zu keinem Zeitpunkt die Möglichkeit bestehen, dass biologische Arbeitsstoffe entweichen können.

7.4.2.3 Technische Maßnahmen

Wird mit Versuchstieren gearbeitet, müssen infizierte Tierkörper sicher vor Ort entsorgt werden können. Dies kann durch thermische Inaktivierung, insbesondere alkalisiche Hydrolyse, Verbrennungsanlagen für Tierkörper oder andere geeignete Einrichtungen erfolgen, die Bedingungen schaffen, die der validierten Methode für Dampftrockenverfahren mindestens gleichwertig sind und von der zuständigen Behörde zugelassen wurden.

7.4.3 Organisatorische Maßnahmen

7.4.3.1 Zugangsregelungen

Den Schutzstufe 4-Bereich dürfen ausschließlich Stammpersonal oder vom Stammpersonal ständig begleitete bzw. sicherheitsüberprüfte Betriebsfremde während der Revision mit definiertem Auftrag, z. B. für eine Geräte-Reparatur oder Wartungsarbeiten, betreten. Der Zugang zum Schleusensystem kann beispielsweise über Zahlencode (PIN) oder Magnetkarten freigegeben werden.

7.4.3.2 Ein- und Ausschleusen

54 Siehe Anhang VI der Verordnung (EU) Nr. 142/2011
Bei der Desinfektionsdusche (Chemikaliendusche) muss eine vollständige, flächige Benetzung der gesamten Oberfläche des Schutzanzugs gewährleistet sein. Die Duschdauer muss die vollständige und wirksame Desinfektion des Schutzanzugs gewährleisten. Die anschließende Spülung mit Wasser muss das Desinfektionsmittel vollständig entfernen, um Kontakte zu den entsprechenden chemischen Komponenten zu vermeiden.

7.4.3.3 Regeln für sicheres Arbeiten

7.4.3.4 Hygiene

Der Hygieneplan (siehe Kapitel 9.4 und Anhang 6) muss lückenlos erstellt sein.

7.4.3.5 Entsorgung

Im Schutzstufenbereich muss ein ausreichend dimensionierter Durchreicheautoklav vorhanden sein, dessen Verriegelungsmaschine ein Öffnen der Tür nach außen nur zulässt, wenn der Sterilisationszyklus störungsfrei abgelaufen ist. Die Inaktivierung kontaminierter Prozessabluft55 und des Kondenswassers muss gewährleistet sein (z. B. Incinerator). Der Autoklav darf nicht im Schleusenbereich stehen.

Die im Schutzstufenbereich anfallenden Abwässer sind grundsätzlich einer geeigneten thermischen oder chemisch-thermischen Nachbehandlung (Zentrale Abwassersterilisation) zu unterziehen.

Anfallende Abwässer, einschließlich der aus dem Schleusenbetrieb und Löschwasser, müssen grundsätzlich dampfsterilisiert werden.

7.4.3.6 Instandhaltung

Außer im Notfall oder bei kleineren technischen Korrekturen findet die Routinewartung immer zu regelmäßigen, vereinbarten Terminen statt, an denen der Bereich der Schutzstufe 4 desinfiziert und vorübergehend stillgelegt wird.

7.4.4 Persönliche Schutzausrüstungen

Beschäftigte müssen bei Tätigkeiten in einem Laboratorium der Schutzstufe 4 durch einen fremdbelüfteten Vollschaftanzug geschützt sein, wobei die Atemluftversorgung durch eine autarke Luftzuleitung erfolgen muss. Der Vollschaftanzug muss folgende Kriterien erfüllen:

- mechanische Eigenschaften: abriebfest, reißfest und luftundurchlässig,
- chemische Eigenschaften: beständig gegen das bei der Desinfektionsdusche verwendete Desinfektionsmittel,
- vorzugsweise angeschweißte Stiefel,
- vorzugsweise mit Befestigungsbügeln für Handschuhe.

Zum Schutz der Hände müssen zwei Paar Handschuhe der Kategorie III (und mit einem AQL-Wert ≤ 1.5) getragen werden, wobei mindestens der äußere Handschuh an den Ärmelstulpen des Schutzanzuges dicht befestigt werden muss (z. B. Klemmbügelvorrichtung).

7.4.5 Notfall

Zu Maßnahmen in Notfällen und bei Störungen siehe auch Kapitel 14.

7.5 Inbetriebnahme und Überprüfung der Funktionalität

Für das Inbetriebnahmeprozedere kann es als vertrauensbildende Maßnahme essenziell sein, neutrale oder unabhängige Spezialisten zumindest zu beteiligen. Für die Überprüfung eignen sich nicht nur rein physikalische Prüfungen, sondern insbesondere auch Prüfungen unter Anwendung von ungefährlichen biologischen Präparaten (Indikatorstämmen).

Es gibt verschiedene Laborausstattungsbereiche, die überprüft werden müssen. So sind beispielsweise zu nennen:
- Anlagen für das physikalische Rückhaltevermögen wie Abwasserentsorgung, Durchreicheautoklav, Raumlufttechnik, MSW
- Organisatorische Maßnahmen wie Gefährdungsbeurteilung, Betriebsanweisung inklusive Hygieneplan, Arbeitsvorschrift für Begasungen, Bedienung von Autoklaven
- Notfallmaßnahmen für Unfälle, Leckage und Bruch, Infektionsgefahr durch Kulturausbruch.

56 Siehe Literaturverzeichnis Abschnitt 5
8 Prüfungen in Laboratorien

8.1 Allgemeines

Prüfungen von Arbeitsmitteln im Labor sind grundsätzlich in der Betriebssicherheitsverordnung in §§ 4 und 14 geregelt. Nach § 8 Abs. 6 der Biostoffverordnung hat die Unternehmensleitung die Funktion der technischen Schutzmaßnahmen regelmäßig und deren Wirksamkeit mindestens jedes zweite Jahr zu überprüfen.

Im Rahmen einer Gefährdungsbeurteilung sind (entsprechend den Anforderungen der Betriebssicherheitsverordnung und der Technischen Regeln für Betriebssicherheit) folgende Punkte eigenverantwortlich von der Unternehmensleitung festzulegen und zu dokumentieren:
- die Ermittlung der prüfpflichtigen Geräte und Einrichtungen,
- die zur Prüfung befähigten Personen,
- die Festlegung der Prüffristen und des Prüfumfangs,
- die Organisation der Prüfungen.

Hierfür wird empfohlen, folgende Daten und Unterlagen vorzuhalten:
- Hersteller, Typenbezeichnung, Baujahr und Standort, Betriebsanleitungen und weitere Herstellerunterlagen sowie Wartungsverträge,
- Dokumentation von Mängeln und Fehlerquoten, um Daten für die zukünftige Beurteilung der Prüffristen zu sammeln.

Die Betriebssicherheitsverordnung bestimmt für überwachungsbedürftige Anlagen die Prüfzuständigkeiten, den Prüfumfang und die Prüffristen. Die Einstufungssystematik für Druckanlagen ist der Betriebssicherheitsverordnung bzw. dem Anhang II der Richtlinie 2014/68/EU (Diagramme) zu entnehmen. Arbeitsmittel, die unter diese Regelung fallen, sind beispielsweise Rohrleitungsanlagen unter innerem Überdruck für als entzündbar zu kennzeichnende Gase (Gefahrenhinweise H220 oder H221) oder auch Dampfsterilisatoren/Autoklaven mit einem maximal zulässigen Druck größer 0,5 bar. Weitere Prüfverpflichtungen über die hier genannten hinaus können sich aus anderen Rechtsbereichen ergeben, insbesondere bezüglich der Prüfungen elektrischer Betriebsmittel. Auch Herstellerangaben sind zu berücksichtigen.

8.2 Inbetriebnahmeprüfungen

Nach § 14 und § 15 Betriebssicherheitsverordnung hat die Unternehmensleitung zu gewährleisten, dass überwachungsbedürftige Anlagen sowie Arbeitsmittel, deren Sicherheit von den Montagebedingungen abhängt, durch eine Inbetriebnahmeprüfung und Funktionsprüfung dahingehend überprüft werden, dass sie sich in ordnungsgemäßem Zustand befinden.

Die Inbetriebnahmeprüfung eines neuen Laboratoriums sollte neben einer ausführlichen Sichtprüfung insbesondere die Funktionalität der RLT-Anlage, Überwachungsanlagen sowie die Wirksamkeit von Alarmanlagen und die brand-
schutztechnischen Einrichtungen umfassen. Insbesondere in Laboratorien der Schutzstufen 3 und 4 sollte im Rahmen einer Inbetriebnahmeprüfung u. a. auch die Notstromversorgung mit geprüft werden.

Prüfungen für die sichere Inbetriebnahme und Überprüfung der Funktionalität von sicherheitsrelevanten Laborgeräten (z. B. MSW, Autoklav, Zentrifuge) und Anlageteilen müssen Vertragsbestandteil des Projektauftrags sein und sollten systematisch durchgeführt und umfassend dokumentiert werden.

Für die Inbetriebnahme kann es hilfreich sein, unabhängige Spezialisten oder Spezialistinnen zu beteiligen, die nicht nur rein physikalisch-technische Prüfungen, sondern insbesondere auch Prüfungen der Funktionalität unter Anwendung von biologischen Indikatorsystemen (Bioindikatoren) durchführen.

8.3 Zur Prüfung befähigte Personen

Die Unternehmensleitung muss auf der Grundlage der Gefährdungsbeurteilung gemäß § 3 Betriebssicherheitsverordnung ermitteln und festlegen, welche Voraussetzungen die zur Prüfung von Arbeitsmitteln und überwachungsbedürftigen Anlagen befähigten Personen erfüllen müssen.

Anforderungen an zur Prüfung befähigte Personen

Eine Person gilt für eine bestimmte Prüfung als befähigt, wenn sie eine nach Art, Prüfumfang und Prüftiefe der jeweiligen Prüfung und der damit zusammenhängenden Beurteilung der Prüfergebnisse angemessene Qualifikation aufweist. Bei ihrer Prüftätigkeit unterliegt die zur Prüfung befähigte Person keinen fachlichen Weisungen und darf deshalb keine Benachteiligung erfahren.

Voraussetzung für die fachliche Befähigung für die Tätigkeit ist gemäß TRBS 1203 „Zur Prüfung befähigte Personen“ der Erwerb der Fachkenntnisse durch

› Berufsausbildung,
› Berufserfahrung und
› zeitnahe berufliche Tätigkeit.

Besondere Anforderungen an zur Prüfung befähigte Personen

Zusätzliche Anforderungen sind gemäß TRBS 1203 von den zur Prüfung befähigten Personen zu erfüllen, denen Prüfungen zum Schutz vor Explosionsgefährdungen, Druckgefährdungen oder elektrischen Gefährdungen übertragen werden.

58 Siehe Literaturverzeichnis Abschnitt 5
8.4 Wiederkehrende Prüfungen

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Beispiel</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tägliche Sichtprüfung</td>
<td>Wollfaden am Abzug, optische Anzeige</td>
<td>Benutzer</td>
</tr>
<tr>
<td>Funktionsprüfung/Prüfung mit Messaufwand</td>
<td>Messung des Volumenstroms am Abzug, Dichtheitsprüfung von Geräten, umfangreichere technische Prüfung</td>
<td>entsprechend geschultes Personal (befähigte Personen)</td>
</tr>
<tr>
<td>Prüfung von überwachungsbedürftigen Anlagen</td>
<td>Druckbehälter/Autoklaven, Anlagen in explosionsgefährdeten Bereichen</td>
<td>Zugelassene Überwachungsstellen (ZÜS), Sachverständige</td>
</tr>
<tr>
<td>Elektrische Prüfung</td>
<td>Ortsbewegliche Elektrogeräte</td>
<td>Elektrofachkräfte oder elektrotechnisch unterwiesene Personen</td>
</tr>
</tbody>
</table>

Tabelle 8: Wiederkehrende Prüfungen und typische Prüfer

<table>
<thead>
<tr>
<th>Prüfer</th>
<th>Berufsausbildung</th>
<th>Berufserfahrung</th>
<th>Zeitnahe berufliche Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Azubis, Lehrlinge, Studierende, Praktikanten, Diplomanden, Hilfskräfte</td>
<td>keine abgeschlossene Lehre, Ausbildung im betreffenden Fach mit Nachweis</td>
<td>keine, teilweise Praktikumserfahrung</td>
</tr>
<tr>
<td>B</td>
<td>Laboranten, Techniker (Technische Assistenten, BTA, PTA, CTA, MTA etc.)</td>
<td>abgeschlossene Lehre, Ausbildung im betreffenden Fach mit Nachweis</td>
<td>im betreffenden Bereich, laborspezifisch</td>
</tr>
<tr>
<td>C</td>
<td>Biologen, Biotechnologen, Bio-Ingenieure, Labortechniker, wissenschaftliche Beschäftigte (Doktoranden, Personen mit abgeschlossenem Studium im betreffenden Fach)</td>
<td>abgeschlossenes Studium, praktische Ausbildung während des Studiums</td>
<td>mehrjährige, im betroffenen Bereich, laborspezifisch, mit Geräten und Einrichtungen</td>
</tr>
<tr>
<td>D</td>
<td>Beschäftigte aus der Technikabteilung, sonstige Angestellte (Techniker, Geselle, Meister)</td>
<td>Lehre, Ausbildung in einem technischen Fach, mit Nachweis</td>
<td>Umgang mit Geräten und Einrichtungen im Labor, in Benutzung der Arbeitsmittel und Einrichtungen unterwiesen, teilweise Kenntnis der Vorschriften</td>
</tr>
</tbody>
</table>
Prüfungen in Laboratorien

<table>
<thead>
<tr>
<th>Prüfer</th>
<th>Berufsausbildung</th>
<th>Berufserfahrung</th>
<th>Zeitnahe berufliche Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Externe (Kundendienst, Wartungsfirma, Beschäftigte des Herstellers)</td>
<td>meist unbekannt, technischer Bereich, Ausbildung bei der Hersteller- oder Wartungsfirma</td>
<td>im technischen Bereich: Umgang, Wartung, Instandhaltung, Reparatur spezifisch für die jeweiligen Geräte</td>
<td>technischer Bereich: Wartung, Instandhaltung, Reparatur spezifisch für die jeweiligen Geräte</td>
</tr>
<tr>
<td>F Zugelassene Überwachungsstellen, Sachverständige</td>
<td>technischer Bereich, Ausbildung bei der Hersteller- oder Wartungsfirma</td>
<td>im technischen Bereich, spezifische Prüferfahrung mit den jeweiligen Geräten</td>
<td>im technischen Bereich, spezifische Prüferfahrung mit den jeweiligen Geräten</td>
</tr>
</tbody>
</table>

Tabelle 9: Beispiele für Prüfer in Laboratorien

Als Hilfestellung zur Ermittlung der Prüffristen für wiederkehrende Prüfungen von Labor- und Analysengeräten, für die keine Vorgaben im bestehenden Regelwerk existieren, kann die Checkliste in Anhang 5 herangezogen werden.

8.5 Dokumentation

Defekte oder nicht geprüfte Geräte sind stillzulegen.
9 Hygiene, Hygieneplan

9.1 Allgemeines

Unter Hygiene in Laboratorien wird die Vermeidung gesundheitsschädlicher Arbeitsbedingungen verstanden. Sie ist Teil der Maßnahmen, die die Sicherheit der Beschäftigten bei Tätigkeiten mit Biostoffen gewährleisten. Um den erforderlichen Hygienestatus zu erhalten, sind entsprechende technische und organisatorische Maßnahmen sowie persönliche Schutzausrüstungen notwendig.

9.2 Technische Maßnahmen

Für das Erreichen des erforderlichen Hygienestatus müssen Laboratorien je nach Schutzstufe baulich über entsprechende Lüftungssysteme, wasserdichte, glatte und desinfizierbare Arbeitsflächen, Fußboden-Wandübergänge (z. B. Hohlkehlen), Fußboden-Labormöbelübergänge (z. B. Silikonverfügung) und Arbeitsmittel (z. B. MSW) verfügen (siehe auch Kapitel 7 „Schutzmaßnahmen“).

9.3 Organisatorische Maßnahmen

Zu den organisatorischen Maßnahmen gehören ab Schutzstufe 2 sowie bei Schutzstufe 1, wenn mit Biostoffen der Risikogruppe 1 mit sensibilisierenden oder toxischen Wirkungen gearbeitet wird, sowie generell in gentechnischen Anlagen aller Sicherheitsstufen (gemäß GenTSV 03-2021) ein Hygieneplan und Verhaltensmaßregeln für die Beschäftigten, z. B. in Verbindung mit einer Betriebsanweisung. Darüber hinaus kann es sinnvoll sein, Hygieneschulungen durchzuführen (siehe dazu auch Anhang 8).

Ab Schutzstufe 2 ist gegebenenfalls ein validiertes Testverfahren zum Nachweis einer potenziellen Freisetzung von Biostoffen bei Betriebsstörungen oder Unfällen in der Betriebsanweisung festzulegen. Eine routinemäßige mikrobiologische Überprüfung der Reinigungs- und Desinfektionsmaßnahmen wird nicht gefordert, lediglich die Einhaltung der Maßnahmen des Hygieneplans ist zu kontrollieren (siehe Nr. 5.1 Abs. 5 der TRBA 100). Eine Kontrolle der Umgebungsbedingungen, z. B. durch Abklatschproben oder Luftkeimsammlung, könnte allerdings aus hier nicht behandelten Bereichen der Arzneimittel- oder Medizinproduktesicherheit im Rahmen der Herstellung und Überwachung in Reinraumbereichen gefordert werden.

9.4 Hygieneplan

Ein Hygieneplan gibt klar Auskunft darüber, was, wann, womit und wie zu reinigen bzw. zu desinfizieren ist und wer zu reinigen bzw. zu desinfizieren hat (Musterhygieneplan siehe Anhang 6). Er sollte im Laboratorium, z. B. in tabellarischer Form, ausgehängt sein. Die Durchführung kann dokumentiert werden.

Der Hygieneplan benennt die zum Einsatz kommenden Reinigungs- und Desinfektionsmittel (womit) mit den entsprechenden Angaben zu ihrer Dosierung. Weiterhin beschreibt er Art (wie), Umfang (was) und Häufigkeit (wann) der Reinigungs- und Desinfektionsmaßnahmen. Er regelt die Entsorgung kontaminierter fester und flüssiger Abfälle, das Vorgehen bei akzidenteller Kontamination sowie die Personalhygiene. Er empfiehlt, sofern erforderlich, Ungeziefer in geeigneter Weise zu bekämpfen.
Beispiele:

Was: Raum, Oberfläche, Gerät (z. B. MSW), Instrumente, Hände, Schutzkleidung

Wann: Häufigkeit, Zeitpunkt, Zeitintervall

Womit: Hilfsmittel (z. B. Tücher, Wischmopp), Auswahl an Reinigungs- bzw. Desinfektionsmitteln (mit Angabe von Konzentration und Einwirkungszeit)

Wie: (Desinfizierende) Reinigung, Wischdesinfektion, Zwei-Eimer-Methode, Waschen, Tauchbad, Autoklavieren, hygienische Händedesinfektion

Wer: Geschultes Personal, regelmäßig unterwiesen
10 Sterilisation, Desinfektion, Dekontamination

10.1 Allgemeines

Bei Tätigkeiten in mikrobiologischen Laboratorien der Schutz- und Sicherheitsstufen 1 bis 4 dienen Sterilisations-, Desinfektions- und Dekontaminationsverfahren dazu, Menschen, das Tier- und Pflanzenreich sowie die Umwelt vor schädlichen Mikroorganismen zu schützen. Gleichzeitig sind z. B. auch Experimente, Untersuchungsgut und Medien vor mikrobieller Verunreinigung zu bewahren.

Abbildung 52: Laborspülautomat zur Reinigung und Desinfektion

10.2 Sterilisation und Sterilisationsverfahren

Sterilisation ist die Abtötung aller vermehrungsfähigen Mikroorganismen einschließlich ihrer Dauerformen sowie die Inaktivierung von Viren durch physikalische oder chemische Verfahren.

Sterilisation im Sinne der vorstehenden Definition kann durch physikalische oder chemisch-physikalische Verfahren erfolgen. Die Sterilisationsverfahren beruhen auf der Anwendung von

- Dampf,
- trockener Hitze,
- Gas oder
- Filtration.

Die Wirksamkeit oder Effektivität (F-Wert) eines Sterilisationsverfahrens (Ausnahme: Filtration) lässt sich anhand von Kenngrößen, die experimentell ermittelt wurden, berechnen und beurteilen. Keim- und verfahrensspezifische Kenngrößen sind z. B.:

- D-Wert (ist die Zeit in Minuten, um eine Ausgangskeimzahl eines Mikroorganismus um eine Zehnerpotenz herabzusetzen)
- z-Wert (ist die Temperaturänderung in °C, die notwendig ist, um den D-Wert um den Faktor 10 zu ändern)
- L-Wert (ist die Letalrate eines bestimmten Verfahrens in Minuten verglichen mit den Bedingungen eines Referenzverfahrens, z. B. 121 °C/20 min)
Um die Wirksamkeit von Sterilisationsverfahren mikrobiologisch zu überprüfen, werden geeignete Bioindikatoren (Nor
tenreihe DIN EN ISO 11138) ausgewählt. Sporen von *Geobacillus stearothermophilus* eignen sich besonders für die Dampfsterilisation, werden aber auch für Wasserstoffperoxidbegasungen eingesetzt. Sporen von *Bacillus subtilis* finden Anwendung für die Sterilisation mit trockener Hitze oder Gas (z. B. Ethylenoxid). Sporen von *Bacillus pumilus* für die Ste
ilisation mittels ionisierender Strahlen.

10.2.1 Sterilisation mit Dampf

Bei dem Standardverfahren mit gespanntem, gesättigtem Wasserdampf beträgt die Sterilisationstemperatur 121 °C bzw. 134 °C und die Sterilisationszeit (Haltezeit) 20 min (Einzelheiten dazu siehe Kapitel 5.11 „Autoklaven (Dampfsterilisat
toren)“).

10.2.2 Sterilisation durch trockene Hitze/Heißluft

Der Einsatz von Heißluftsterilisatoren ist auf hitzestabile, nicht poröse Materialien wie Metalle, Glas oder Porzellan beschränkt.

Die Standardbedingungen eines Heißluftsterilisators sind eine Sterilisationstemperatur von 160 °C über eine Haltezeit von 120 min. Auch 180 °C/30 min oder ≥ 200 °C/10 min (jeweils Haltezeit) sind gängige Sterilisationsbedingungen.

tionsprogramm so zu wählen, dass die erforderliche Sterilisationstemperatur und -zeit für jedes Sterilisiergut eingehalten wird.

Die Sterilisationsbedingungen sollten bei jedem Zyklus in geeigneter Weise (z. B. Temperatur-Zeit-Diagramm) aufgezeich
et werden.

10.2.3 Sterilisation mit Gasen

Sterilisation mit Formaldehyd

Zur Sterilisation kommt Formaldehyd zusammen mit Wasserdampf bei einem Unterdruck von 0,2 bar und einer Tempera
tur von 60–75 °C in vollautomatischen Begasungskammern zur Anwendung. Die Sterilisierzeit beträgt bis zu 90 Minuten. Im Anschluss daran ist noch im entsprechenden Gerät die Desorption in Form einer mehrmaligen Vakuum- bzw. Dampf
spülung vorzunehmen. Die Vorgaben der TRGS 513 „Tätigkeiten an Sterilisatoren mit Ethylenoxid und Formaldehyd“ sind zwingend zu beachten. Begasungen mit Formaldehyd zur regelmäßigen oder anlassbezogenen Desinfektion/Dekontami
nation von Räumen werden in der TRGS 522 „Raumdesinfektion mit Formaldehyd“ geregelt. Dies gilt auch für die Des
infektion beweglicher Güter in Transporteinheiten oder in fest installierten raumähnlichen Desinfektionskammern (siehe auch Kapitel 10.4 „Raumdekontaminationsverfahren“).
Sterilisation mit Wasserstoffperoxid

Das Wirkprinzip der Wasserstoffperoxid-Gasplasma-Sterilisation (STER-RAD®-Verfahren) ist die Anwendung von H_2O_2-Gas bei Temperaturen zwischen $6°$ und $60 °C$ im Unterdruck bei gleichzeitiger Erzeugung eines hochfrequenten elektromagnetischen Feldes. Wird auf diese Weise flüssiges H_2O_2 in einer Sterilisatorkammer vernebelt und als Plasma eingesetzt, so wirkt es toxisch auf viele Prokaryonten. Es ist bakterizid, sporozid, fungizid und viruzid.

Der Sterilisationszyklus (Konzentration des H_2O_2 in ppm, Länge der Einwirkzeit, Dauer der Spülphase) ist abhängig von der Beschaffenheit des Sterilisiergutes (vor allem Medizinprodukte) sowie von der Beladungsmenge und -verteilung innerhalb der Sterilisationskammer. Diese Parameter sind so zu wählen, dass die erforderliche Keimreduktion erreicht wird (Einsatz von Bioindikatoren: Sporen von *Geobacillus stearothermophilus*).

10.2.4 Sterilisation durch Filtration

Membranfilter mit einer mittleren Porengröße von 0,22 µm oder kleiner werden als Sterilfilter bezeichnet. Es können auch kombinierte Tiefenfilter (Vorfilter) und Membranfilter verwendet werden.

Die Herstellerangaben zur chemischen und thermischen Beständigkeit der Filter sind zu beachten.

![Abbildung 53: Belüftungsfilter im Technikbereich eines Autoklaven](image-url)
10.2.5 Sterilisation durch Strahlung

Die Sterilisationsbedingungen werden bei jedem Zyklus in geeigneter Weise aufgezeichnet (z. B. Dosimetrieverfahren).

Abbildung 54: Röntgenbestrahler für Biostoffe

10.3 Desinfektion und Desinfektionsverfahren

Unter Desinfektion versteht man die gezielte Behandlung von Materialien, Gegenständen oder Oberflächen mit physikalischen bzw. chemischen Verfahren, um zu bewirken, dass von ihnen keine Infektionsgefahr mehr ausgeht.

Eine Besonderheit ist die Virusdesinfektion. Viren sind keine Lebewesen und können deshalb nicht abgetötet werden. Durch ein „virozides“ physikalisches oder chemisches Verfahren werden Viren so inaktiviert, dass sie ihre Vermehrungsfähigkeit verlieren.

In der Praxis erreicht man eine Desinfektion durch eine Reduktion vermehrungsfähiger Bakterien um mindestens 5 Zehnerpotenzen. Die Wirksamkeit viruzider Desinfektionsmittel wird als ausreichend definiert, wenn der Virustiter um mindestens 4 Zehnerpotenzen reduziert wird.59

59 Kapitel 9.2.1 „Konservierung als Teil der Produktqualität und -sicherheit“, aus „Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung – Qualitätssicherung der Hygiene in Industrie, Pharmazie und Medizin“
10.3.1 Physikalische Desinfektionsverfahren

Die Standardmethode, insbesondere für die Abfallsorgung, ist das Autoklavieren (siehe Kapitel 5.11 „Autoklaven (Dampfsterilisatoren)“).

Kochen oder Pasteurisieren (Niederpasteurisierung bei 61.5 °C für 30 min oder Hochpasteurisierung bei 72 °C für 15 s) von wässrigen Lösungen (z. B. Milch) kommt insbesondere in der Lebensmittelindustrie zur Anwendung.

UV-Strahlen (Wirkungsoptimum bei 254 nm) können zur Keimreduktion auf Oberflächen, in der Raumluft oder der Luft in einer MSW zur Anwendung kommen. Die erforderliche Bestrahlungsdosis (μW · s/cm²) kann organismenabhängig sehr unterschiedlich sein. Belichtungsschatten, zeitabhängige UV-Wellenlängenverschiebung der Lampen, geringe Eindringtiefe in Spalten und Leistungsverringerung durch Schmutz beeinträchtigen die Wirksamkeit des Verfahrens, sodass die ständige Überwachung der Leistung des UV-Strahlers durch ein UVC-Dosimeter eine Voraussetzung ist. Werden diese kritischen Aspekte nicht beachtet, kommt es nicht zur desinfizierenden Wirkung.

10.3.2 Chemische Desinfektionsverfahren

Wirkstoffe, die als Desinfektionsmittel in Betracht kommen, sind in Tabelle 10 gruppenweise zusammengestellt.

Wichtige Auswahlkriterien für die Anwendung von chemischen Desinfektionsmitteln sind z. B.:

- Wirkungsspektrum
- Einwirkungsdauer
- Endkonzentration des Wirkstoffes
- Stabilität
- Wirkungsbeeinträchtigung durch Reinigungsmittel und Proteine („Seifen- und Eiweißfehler“) und niedrige Temperaturen („Kältefehler“)
- Raumfeuchte
- Brand- und Explosionsgefahr, Aufbringmenge pro m²
- Gesundheitsbelastung für Beschäftigte
- Haut- und Schleimhautverträglichkeit
- Umweltverträglichkeit
- Materialverträglichkeit
- Art der zu desinfizierenden Oberfläche
- Benetzungseigenschaft
<table>
<thead>
<tr>
<th>Wirkstoffgruppe</th>
<th>Effektivität</th>
<th>Bakterien</th>
<th>Mycobacterium tuberculosis</th>
<th>Bakterien-sporen</th>
<th>Pilze</th>
<th>behüllte Viren</th>
<th>unbehüllte Viren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohole</td>
<td>mittel</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Formaldehyd</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Glutaraldehyd</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Glyoxal</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Mycobacterium tuberculosisa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakterien-sporen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>behüllte Viren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unbehüllte Viren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halogene</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Chlor</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Jod</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Peroxidverbindungen</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Ozon</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Peressigsäure</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Wasserstoffperoxid</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>Phenole</td>
<td>niedrig</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>(+)</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Oberflächen-aktive Verbindungen</td>
<td>mittel</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Glucoprotamin</td>
<td>niedrig</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>quaternäre Verbindungen</td>
<td>niedrig</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>amphothere Verbindungen</td>
<td>niedrig</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Chlorhexidin</td>
<td>niedrig</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Ocentidinhydrochlorid</td>
<td>niedrig</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>+</td>
<td>Wirksamkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+) eingeschränkte Wirksamkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>keine Wirksamkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a und verwandte Arten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Übersicht über Desinfektionsmittelgruppen und deren Wirkungsspektren (modifiziert nach Dietlein & Exner, 2001)

⁶⁰ Siehe Literaturverzeichnis Abschnitt 5
10.4 Raumdekontaminationsverfahren

Dekontamination ist die Reduktion der Konzentration von Biostoffen auf ein gesundheitlich unbedenkliches Maß.

10.4.1 Formaldehydverdampfung

Die Raumdekontamination durch Formaldehydverdampfung ist eine hochwirksame Methode und kann in Laboratorien der Schutzstufen 3 und 4 zum Einsatz kommen. Nach entsprechender Validierung können dabei Anforderungen der Desinfektion erreicht werden. Es müssen dazu personenunabhängige Formaldehydverdampfungsgeräte verwendet werden. Als anerkanntes Verfahren nach Robert Koch-Institut (RKI) gelten etwa 5 g Formaldehyd pro m³ Raumvolumen. Die Raumdesinfektion durch Formaldehydverdampfung darf nur von Personen durchgeführt werden, die einen Befähigungsschein und eine Erlaubnis der zuständigen Behörde besitzen (siehe Anhang 1 Nr. 4 Gefahrstoffverordnung sowie TRGS 522 „Raumdesinfektion mit Formaldehyd“).

Formaldehyd ist in wässrigen Formulierungen (Formalin) nicht brennbar und nicht explosiv. Beim Verdampfen oder Vernebeln stabilisierter wässriger Formaldehydlösungen ist allerdings die Ausbildung einer explosionsfähigen Atmosphäre nicht ausgeschlossen, wenn der Formaldehydgehalt darin mehr als 16 Masse-% beträgt. Formaldehyd hat eine stark reizende Wirkung auf Körpergewebe, insbesondere auf Schleimhäute. Formaldehyd ist außerdem ein potentes Allergen und ist als krebserzeugend eingestuft (siehe Kapitel 10.5 „Wichtige Wirkstoffgruppen“).

10.4.2 Begasung mit Wasserstoffperoxid (H₂O₂)

61 Siehe Literaturverzeichnis Abschnitt 5
62 Siehe TRGS 522 „Raumdesinfektion mit Formaldehyd“ und BAM Prüfbericht II-1371/2004 Ue/cs im Auftrag der BGW (Köln) vom 06. April 2004
10.4.3 Trocken vernebelte Peressigsäure („Dry Fog“)

10.4.4 Begasung mit Chlordioxid (ClO₂)

Die Begasung mit Chlordioxid wird insbesondere im angloamerikanischen Raum auch zur Dekontamination von Laborräumen inklusive ihrer Ausstattung, von „Glove“-Boxen, Isolatoren oder Inkubatoren angewendet. Die wirksame ClO₂-Konzentration an der Dekontaminationsstelle beträgt etwa 10 mg/Liter bei einer Kontaktzeit von 1 bis 2 Stunden. Die oxidative Wirkung von Chlordioxid begründet seine antibakteriellen, viruziden und sporoziden Eigenschaften. Die zu begasenden Räume müssen abgedichtet und abgedunkelt werden, weil Chlordioxid durch UV-Licht rasch zerfällt. Die optimale Raumluftfeuchtigkeit liegt bei >50 %. Wie andere starke Oxidationsmittel kann Chlordioxid erhebliche korrosive Effekte an empfindlichen Oberflächen und Geräten, sogar aus Edelstahl, zur Folge haben, was seinen Einsatz beschränkt.

10.5 Wichtige Wirkstoffgruppen

Alkohole und Alkohol-Mischpräparate

Alkohole (Ethanol, iso-Propanol, n-Propanol) sind farblose Flüssigkeiten, die bei Konzentrationen von 50–80 % (v/v) eine schnelle mikrobizide Wirkung auf vegetative Mikroorganismen entfalten. Diese abtötende Wirkung beruht auf der Denaturierung von zytoplasmatischen Proteinen, die allerdings bei wasserfreiem Alkohol wegen seiner stark entwässernden Eigenschaft nicht zur Wirkung kommt.

Bakterien- und Pilzsporen lassen sich mit Alkoholen nicht oder nur schwer abtöten; unbehüllte Viren sind ebenfalls kaum empfindlich. Behüllte Viren, wie Humane Immundefizienzviren (HIV) oder Hepatitis-B-Viren (HBV), werden in der Regel vollständig inaktiviert.

Der Haupteinsatzbereich der Alkohole liegt bei der Hände- und Hautdesinfektion sowie bei Flächen. Aufgrund der Brand- und Explosionsgefahr dürfen alkoholische Desinfektionsmittel nur auf kleineren Flächen und in begrenzter Menge angewendet werden (Wischdesinfektion; Sprühdesinfektion vermeiden).

Zur Erzielung einer remanenten Wirkung werden die Alkohole dabei in der Regel mit anderen Desinfektionsmitteln (quatemäre Ammoniumbasen, Amphotenside, Triclosan und Chlorhexidin) gemischt.
Aldehyde

Aufgrund ihrer toxikologischen Einstufung werden Aldehyde heute nicht mehr so häufig wie früher zur Flächendesinfektion eingesetzt. In der Regel werden Aldehyde in Kombination mit anderen Desinfizienzen zur Erweiterung des Wirkspiegels verwendet, auf Flächen in Form von Wischdesinfektion.

Formaldehyd wird in erster Linie zur Raumdesinfektion eingesetzt. Formaldehyd ist bei Zimmertemperatur ein stechend riechendes, farblooses Gas; in 35–40%-iger wässriger Lösung wird es als Formalin bezeichnet. Der Arbeitsplatzgrenzwert (AGW) für Formaldehyd beträgt 0,3 ml/m³ (ppm) bzw. 0,37 mg/m³, der AGW für Glutaraldehyd beträgt 0,05 ml/m³ (ppm) bzw. 0,2 mg/m³. Formaldehyd wird als krebsereizend für den Menschen bewertet (Karzinogenität, Kat. 1B; H350). Bei Einhaltung des AGW am jeweiligen Arbeitsplatz sind keine zusätzlichen Schutzmaßnahmen erforderlich. Ist die Einhaltung des AGW nicht nachgewiesen, sind zusätzliche Maßnahmen nach § 10 und § 14 Gefahrstoffverordnung zu ergreifen. Vorrangig ist die Prüfung, ob an Stelle formaldehydhaltiger Produkte andere, formaldehydfreie Produkte verwendet werden können.

Peroxyverbindungen

Peroxyverbindungen entfalten ihre mikrobizide Wirkung durch die Freisetzung von naszierendem atomarem Sauerstoff (Radikalbildung). Ihr Wirkungsspektrum ist sehr breit und umfasst selbst Pilz- und Bakteriensporen einschließlich Milzbrandsporen.

Wasserstoffperoxid (H₂O₂)

Wasserstoffperoxid (H₂O₂) ist das am längsten verwendete Peroxid. Es ist eine farblose Flüssigkeit, die in der Regel als 30%-ige wässrige Lösung eingekauft wird. H₂O₂ ist ein starkes Oxidationsmittel, das bei Einwirkung auf oxidierbare Materialien zur Entzündung oder sogar zur Explosion führen kann, und es wirkt stark ätzend.

Wegen der starken Zehrung durch organisches Material und der Inaktivierung durch Peroxydasen, die reichlich im Gewebe vorhanden sind, ist die mikrobizide Wirkung unzuverlässig.

Persäuren

Persäuren, wie Perameisen-, Peressig-, Perpropion- und Perbernsteinsäure, sind weitere wichtige, für die Desinfektion nutzbare Peroxyverbindungen.

Halogene
Chlor wird praktisch nur für die Wasserdesinfektion (Trinkwasser, Badewasser) benutzt. Es ist ein stark riechendes und reizendes, giftiges Gas, das Schleimhäute und Atmungsorgane schädigt. Der Arbeitsplatzgrenzwert (AGW) beträgt 1,5 mg/m³, entsprechend 0,5 ml/m³ (ppm). Sein breites Wirkungsspektrum beruht vor allem auf der Bildung von unterchloriger Säure in wässrigem Milieu, die zur Freisetzung von naszierendem Sauerstoff führt und deshalb wie die vorstehend genannten Oxidanzien wirkt. Als weitere Mechanismen der Desinfektionswirkung werden die Reaktionen mit Imino- und Aminogruppen angenommen. Zu Chlordioxid siehe auch Kapitel 10.4.4 „Begasung mit Chlordioxid (ClO₂)“.

Hypochloritlösungen werden trotz ihrer Abwasserbelastung weiterhin als Flächendesinfektionsmittel und für die Gerätedesinfektion verwendet, sowie zur Beseitigung von Nukleinsäurekontaminationen auf Arbeitsflächen und Geräten.

Phenole

Die Phenole sind in wässriger Lösung stabil und wirken auch in niedriger Konzentration von 0,1–1 %. Ihr Wirkungsspektrum umfasst prinzipiell Pilze und Bakterien, wobei gegen Mykobakterien höhere Konzentrationen erforderlich sind. Die antivirale Wirkung hängt von der Lipophilie oder Hydrophilie des Virus ab. Hydrophile, nicht behüllte Viren werden kaum beeinträchtigt. Ebenso fehlt eine sporozide Wirkung.

Die Verbindungen gelten als relativ gering akut toxisch, jedoch durchdringen sie leicht die Haut, reichern sich im Körper an und können Haut-, Leber- und Nervenschäden verursachen.

Oberflächenaktive Verbindungen (Tenside)
Anionische Verbindungen (Carboxylseifen) besitzen eine geringe desinfizierende Wirkung, vor allem bei niedrigem pH-Wert und erhöhter Temperatur.

Auch Amphotenside finden als Desinfektionsmittel Verwendung, sind jedoch wegen ihrer Wirkungslücken und ihrer teilweisen geringeren Aktivität nur begrenzt einsetzbar, vor allem bei der Flächendesinfektion.

10.6 Schutzmaßnahmen beim Umgang mit chemischen Desinfektionsmitteln
Zur Vermeidung von Reizungen oder Schädigungen der Haut, Augen, Schleimhäute und Atemwege sowie zur Vermeidung von Allergien sind beim Umgang mit Desinfektionsmitteln folgende Schutzmaßnahmen zu beachten:

▷ Es ist das für den jeweiligen Zweck geeignete Desinfektionsmittel, das zugleich das niedrigste Gesundheitsrisiko aufweist, einzusetzen.
Persönliche Schutzausrüstungen (auf das Desinfektionsmittel abgestimmte Schutzhandschuhe sowie Schutzbrillen zum Schutz vor Spritzern, gegebenenfalls auch Schürzen, Stiefel etc.) sind von der Unternehmensleitung bereitzustellen und von den Beschäftigten zu tragen, besonders beim Umgang mit unverdünntem Desinfektionsmittel.

Die Exposition gegenüber Desinfektionsmitteldämpfen sowie insbesondere jeder Hand-zu-Augen-Kontakt sind zu vermeiden.

Schutzmaßnahmen bei der Verwendung entzündbarer Desinfektionsmittel (vor allem auf alkoholischer Basis) sind:

- Alkoholische Desinfektionsmittel dürfen zur Flächendesinfektion nur verwendet werden, wenn eine schnell wirksende Desinfektion notwendig ist und ein Ersatzstoff oder -verfahren nicht zur Verfügung steht.\(^{65}\)
- Die Menge an ausgebrachter Gebrauchslösung ist zu begrenzen auf maximal 50 ml je m\(^2\) zu behandelnder Fläche oder auf maximal 100 ml je m\(^2\) Raumgrundfläche (Gesamtmenge pro Raum).\(^{66}\)
- Heiße Flächen müssen vor der Desinfektion abgekühlt sein.
- Wirksame Zündquellen dürfen während der Desinfektion nicht vorhanden sein. Vor dem Einbringen von Zündquellen (z. B. elektrische Geräte) ist das Abtrocknen des alkoholischen Desinfektionsmittels abzuwarten.
- Aerosolbildung muss so weit wie möglich vermieden werden.
- Die Anforderungen an die Lagerung entzündbarer Flüssigkeiten (z. B. Mengenbegrenzung am Arbeitsplatz, Lagerungsbedingungen, gegebenenfalls Zusammenlagerungsvorleute, gegebenenfalls Erfordernis von Sicherheitsschränken) sind zu beachten.\(^{67}\)

Die Beschäftigten sind im Umgang mit chemischen Desinfektionsmitteln zu unterweisen. Als Grundlage für die Unterweisung dienen Betriebsanweisungen auf Basis der Gefährdungsbeurteilung und unter Berücksichtigung der Angaben des Sicherheitsdatenblattes.

Weitere Informationsquellen sind die TRGS 525 „Gefahrstoffe in Einrichtungen der medizinischen Versorgung“ sowie die DGUV Information 207-206 „Prävention chemischer Risiken beim Umgang mit Desinfektionsmitteln im Gesundheitswesen“.

\(^{65}\) Siehe TRGS 525 „Gefahrstoffe in Einrichtungen der medizinischen Versorgung“

\(^{66}\) Siehe Anlage 4 Beispielsammlung Nr. 4.6.1.3 der DGUV Regel 113-001 „Explosionsschutzregeln (EX-RL)“

\(^{67}\) Abschnitt 12 der TRGS 510 „Lagerung von Gefahrstoffen in ortsbeweglichen Behältern“
11 Transport und Versand

Der Versand von Biostoffen sowie von gentechnisch veränderten (Mikro-)Organismen (GVO) unterliegt weltweit bei sämtlichen Verkehrsträgern den Gefahrgutvorschriften, harmonisiert durch die Modell-Vorschriften der UN „Empfehlungen für den Transport gefährlicher Güter“ („Orange Book“). Auch bei Inlandstransporten finden die Gefahrgutvorschriften (siehe unten) Anwendung.

Aufgrund des nationalen Gefahrgutbeförderungsgesetzes (Gesetz über die Beförderung gefährlicher Güter – GGBefG) existieren für den Transport von Gefahrgütern, unter die auch Biostoffe fallen, nationale und internationale Bestimmungen, die spezifisch für die unterschiedlichen Beförderungswege gelten.

Biostoffe, die versendet werden, sind in der Regel in die Gefahrklasse 6.2 („Ansteckungsgefährliche Stoffe“) eingestuft.

Gefahrgutvorschriften für die Straße, Eisenbahn und Binnenschifffahrt:

- Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt (GGVSEB)
- Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße/Accord européen relatif au transport international des marchandises dangereuses par route (ADR)
- Regelung zur Ordnung für die internationale Eisenbahnbeförderung gefährlicher Güter/Règlement concernant le transport internationale ferroviaire des marchandises dangereuses (RID)
- Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf Binnenwasserstraßen/Accord européen relatif au transport international des marchandises dangereuses par voie de navigation intérieure (ADN)

Gefahrgutvorschriften für den Luftweg:

- International Civil Aviation Organization – Technical instructions for the safe transport of dangerous goods by air (ICAO-TI)
- International Air Transport Association – Dangerous Goods Regulations (IATA-DGR)

Gefahrgutvorschriften für die Seeschifffahrt:

- Gefahrgutverordnung See (GGVSee)
- International maritime dangerous goods code (IMDG-Code)

Daneben ist die Verordnung über die Bestellung von Gefahrgutbeauftragten in Unternehmen (Gefahrgutbeauftragtenverordnung – GbV) zu beachten. Im Straßen-, Eisenbahn-, Binnen- und Seeschifffahrtsverkehr sind durch die nationalen Gefahrgutverordnungen GGVSEB und GGVSee Verantwortlichkeiten detailliert unter verschiedenen Beteiligten aufgeteilt. So hat beispielsweise der Absender die Klassifizierung zu prüfen, der Verpacker die Kennzeichnung anzubringen und der Verlader die Unversehrtheit der Umschließungen zu prüfen. Eine ausführliche Auflistung hierzu findet sich im Merkblatt A 013 „Beförderung gefährlicher Güter“ (DGUV Information 213-052) der BG RCI.

Im Luftverkehr ist der Versender bzw. die Versenderin unter anderem verantwortlich für:

- Klassifizierung der Biostoffe
- Einhaltung der Verpackungsvorschriften
- Deklaration
- gegebenenfalls Kennzeichnung
- Versendererklärung „Shippers Declaration“ bzw. Luftfrachtbrief
- Auswahl der Spedition

Für die Einhaltung der Transportvorschriften sind der Versender bzw. die Versenderin und die Spedition verantwortlich.

Die Gefahrgutvorschriften sind für die einzelnen Verkehrsträger spezifisch und unterliegen ständigen Änderungen. Die Regelungen der IATA beruhen auf den ICAO-Regeln (UN-Unterorganisation) und werden jährlich überarbeitet. Besonders beim Versand von empfindlichem infektiösem/nicht infektiösem biologischen Material und infektiösen/nicht infektiösen

68 Siehe UN Model Regulations; UN Recommendations on the Transport of Dangerous Goods – Model Regulations; Twentieth revised edition 2017
GVO/Vektoren ist es daher unbedingt notwendig, neben den originalen Regelwerken auch zusammenfassende Literatur zu konsultieren, besonders die von z. B. der WHO und der UN.

12 Gefahrstoffe in biologischen Laboratorien

Einige allgemeine Hinweise:
> Durch die Wahl geeigneter Methoden kann die Anwendung gefährlicher Chemikalien vermieden werden.
> Sind Gefahrstoffe (z. B. Acrylamid, Ethidiumbromid, SDS) als Fertiglösungen, Tabletten oder Pasten verfügbar, so sind diese anstelle der pulverförmigen Ausgangsstoffe zu verwenden.
> Die Kennzeichnung aller Behältnisse, z. B. auch von Spritzflaschen, muss eindeutig, unverwischbar und gegebenenfalls mit Gefahrenpiktogramm erfolgen. Unter bestimmten Voraussetzungen kann ein vereinfachtes Kennzeichnungssystem zur Anwendung kommen.69
> Die Arbeitsplatzgrenzwerte sind einzuhalten, um die Gefahren durch das Einatmen von Chemikaliendämpfen oder -stäuben zu vermeiden. Dies kann beispielsweise durch Arbeiten im Laborabzug sichergestellt werden.
> Die MSW ist kein Laborabzug und nicht für Arbeiten ausgelegt, bei denen dampf- und gasförmige Gefahrstoffe abgeführt werden müssen.
> Gefahrstoffe, die partikulär anfallen und im HEPA-Filter wirksam abgeschieden werden, können in typgeprüften MSW gehandhabt werden (für weitere Informationen siehe Kapitel 5.3 „Arbeiten mit Gefahrstoffen“ im Merkblatt B 011 sowie DIN 12980).
> Wägeplätze, an denen staubende Gefahrstoffe abgewogen werden, müssen über eine wirksame Absaugung verfügen, vor Zugluft geschützt sein und regelmäßig gereinigt werden.
> Für Tätigkeiten mit krebsverzeugenden, erbgutverändernden oder fortplanzungsgefährdenden Stoffen der Kategorien 1A und 1B (KMR-Stoffe) sind die einschlägigen Regelungen nach § 10 Gefahrstoffverordnung sowie der Nr. 5.1.7 der TRGS 526 zu beachten.
> Beim Umgang mit hautresorptiven, reizenden, ätzenden oder sensibilisierenden Stoffen sind die geeigneten persönlichen Schutzmaßnahmen, wie z. B. Schutzhandschuhe, Schutzbrille, Atmschutz zu verwenden. Bei der Entsorgung von Chemikalien sind die entsprechenden Vorschriften zu beachten.
> Besonders problematisch sind Abfälle, die sowohl Biostoffe höherer Risikogruppe als auch Gefahrstoffe in nennenswerter Menge enthalten. Diese dürfen nicht autoklaviert werden und müssen fachgerecht entsorgt werden.

Die beim Umgang mit chemischen Desinfektionsmitteln zu beachtenden Sicherheitsmaßnahmen sind in Kapitel 10.6. aufgeführt.

69 Siehe Arbeitshilfe „Etiketten erleichtern das Kennzeichnen in Laboratorien“ im Fachwissen-Portal der BG RCI unter www.bgrci.de/fachwissen-portal/ themenspektrum/laboratorien/laborrichtlinien/vereinfachtes-kennzeichnungssystem/ (Seiten ID: #2HRT)
<table>
<thead>
<tr>
<th>Stoffname</th>
<th>CAS-Nummer</th>
<th>KMR-Einstufung* (Kat. 1A und 1B)</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>67-64-1</td>
<td>–</td>
<td>Lösemittel</td>
</tr>
<tr>
<td>Antibiotika (z. B. Ampicillin, Chloramphenicol, Gyrase-Hemmer)</td>
<td>häufig gegeben, stoffabhängig zu ermitteln</td>
<td>Selektion Bakterien, Zellkultur</td>
<td></td>
</tr>
<tr>
<td>Acetonitril</td>
<td>75-05-8</td>
<td>–</td>
<td>Lösemittel</td>
</tr>
<tr>
<td>Acridin-Orange Zinkchlorid Doppelsatz</td>
<td>10127-02-3</td>
<td>–</td>
<td>Farbstoff, Nukleotidchemie</td>
</tr>
<tr>
<td>Acrylamid</td>
<td>79-06-1</td>
<td>Carc. 1B (H 350) Muta 1B (H 340)</td>
<td>Elektrophorese-Gel</td>
</tr>
<tr>
<td>Ammoniumpersulfat (APS)</td>
<td>7727-54-0</td>
<td>–</td>
<td>Gelherstellung</td>
</tr>
<tr>
<td>5-Brom-2′-desoxyuridin</td>
<td>59-14-3</td>
<td>–</td>
<td>Selektionsmedium</td>
</tr>
<tr>
<td>1,4-Butandiol</td>
<td>110-63-4</td>
<td>–</td>
<td>Embryovitrifizierung</td>
</tr>
<tr>
<td>Chloroform (Trichlormethan)</td>
<td>67-66-3</td>
<td>Carc. 1B</td>
<td>Nukleinsäure-Extraktion</td>
</tr>
<tr>
<td>Coomassie-Blue G250</td>
<td>6104-58-1</td>
<td>–</td>
<td>Färbungen</td>
</tr>
<tr>
<td>4′,6-Diamidino-2-phenylindoldihydrochlorid (DAPI)</td>
<td>28718-90-3</td>
<td>–</td>
<td>Fluoreszenzfarbstoff</td>
</tr>
<tr>
<td>Dichloridmethylsilan</td>
<td>75-78-5</td>
<td>–</td>
<td>Silanierung</td>
</tr>
<tr>
<td>3,3′-Dimethoxybenzidin</td>
<td>119-90-4</td>
<td>Carc. 1B (H 350)</td>
<td>Peroxidase-Färbungen</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>67-68-5</td>
<td>–</td>
<td>Kryokonservierung</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>64-19-7</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Estradiol</td>
<td>50-28-2</td>
<td>Repr. 1A (H360 Fd) Laktation (H362) (Herstellerangaben)</td>
<td>Zellkultur, Proliferation Tumorzellen</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>–</td>
<td>Lösemittel</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>1239-45-8</td>
<td>–</td>
<td>Nukleinsäure-Färbmittel</td>
</tr>
<tr>
<td>Ethylenediamintetraessigsäure (EDTA)</td>
<td>60-00-4</td>
<td>–</td>
<td>Puffer, Komplexbildner</td>
</tr>
<tr>
<td>Ethylmethansulfonat</td>
<td>62-50-0</td>
<td>Muta. 1B (H 340)</td>
<td>Herstellung von Mutanten</td>
</tr>
<tr>
<td>Formaldehyd/Paraformaldehyd</td>
<td>50-00-0</td>
<td>Carc. 1B (H350)</td>
<td>Fixierung von Zellen</td>
</tr>
<tr>
<td>Fluorescein</td>
<td>2321-07-5</td>
<td>–</td>
<td>DNA-Fluoreszenzfarbstoff</td>
</tr>
<tr>
<td>Fluussäure</td>
<td>7664-39-3</td>
<td>–</td>
<td>Abspaltung von Schutzgruppen</td>
</tr>
<tr>
<td>Hydroxyamin (50%ige wässrige Lösung)</td>
<td>7803-49-8</td>
<td>–</td>
<td>Herstellung von Mutanten</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>67-63-0</td>
<td>–</td>
<td>Lösemittel</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>60-24-2</td>
<td>–</td>
<td>Puffer, Reduktionsmittel</td>
</tr>
<tr>
<td>Methanol</td>
<td>67-56-1</td>
<td>–</td>
<td>Lösemittel</td>
</tr>
<tr>
<td>Methotrexat</td>
<td>59-05-2</td>
<td>Muta. 1B (H340) Repr. 1A (H360FD)</td>
<td>Selektionsmedium</td>
</tr>
<tr>
<td>N,N,N′,N′-Tetramethylendiamin (TEMED)</td>
<td>110-18-9</td>
<td>–</td>
<td>Polyacrylamidherstellung</td>
</tr>
<tr>
<td>Natriumazid</td>
<td>26628-22-8</td>
<td>–</td>
<td>Konservierung</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>151-21-3</td>
<td>–</td>
<td>Gelherstellung</td>
</tr>
<tr>
<td>Nitroblau-Tetrazoliumchlorid (NBT)</td>
<td>298-83-9</td>
<td>–</td>
<td>Farbstoff, Nukleotidchemie</td>
</tr>
<tr>
<td>N-Methyl-N′-nitro-N-nitrosoguanidin (MNNG)</td>
<td>70-25-7</td>
<td>Carc. 1B (H350)</td>
<td>Herstellung von Mutanten</td>
</tr>
<tr>
<td>o-Phenyldiamin</td>
<td>95-54-5</td>
<td>–</td>
<td>ELISA-Reagenz</td>
</tr>
<tr>
<td>Stoffname</td>
<td>CAS-Nummer</td>
<td>KMR-Einstufung* (Kat. 1A und 1B)</td>
<td>Verwendung</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Osmiumtetroxid</td>
<td>20816-12-0</td>
<td>–</td>
<td>Färbungen</td>
</tr>
<tr>
<td>Phenol</td>
<td>108-95-2</td>
<td>–</td>
<td>Nukleinsäure-Extraktion</td>
</tr>
<tr>
<td>Pyridin</td>
<td>110-86-1</td>
<td>–</td>
<td>Nukleinsäure-Synthese</td>
</tr>
<tr>
<td>Stickstoff (flüssig)</td>
<td>–</td>
<td>–</td>
<td>Langzeitlagerung Zellen, tiefkalte Arbeiten</td>
</tr>
<tr>
<td>3, 3’5, 5’-Tetramethylbenzidin</td>
<td>54827-17-7</td>
<td>–</td>
<td>ELISA-Reagenz</td>
</tr>
<tr>
<td>6-Thioguanidin</td>
<td>154-42-7</td>
<td>–</td>
<td>Selektionsmedium</td>
</tr>
<tr>
<td>Triethylamin</td>
<td>121-44-8</td>
<td>–</td>
<td>Extraktionsmittel</td>
</tr>
<tr>
<td>Trifluoressigsäure</td>
<td>76-05-1</td>
<td>–</td>
<td>Nukleinsäure-Synthese/Reinigung</td>
</tr>
<tr>
<td>Tris(hydroxymethyl)aminomethan (TRIS)</td>
<td>77-86-1</td>
<td>–</td>
<td>Puffersubstanz</td>
</tr>
<tr>
<td>Trockeneis</td>
<td>124-38-9</td>
<td>–</td>
<td>Kühlung</td>
</tr>
<tr>
<td>Trockeneis-Lösemittel-Kältemischungen</td>
<td>–</td>
<td>–</td>
<td>Kühlung</td>
</tr>
<tr>
<td>Trypanblau-Lösung</td>
<td>72-57-1</td>
<td>Carc. 1B (H350)</td>
<td>Farbstoff Zelfärbung zur Zählung</td>
</tr>
<tr>
<td>Xylol</td>
<td>1330-20-7</td>
<td>–</td>
<td>Lösemittel</td>
</tr>
</tbody>
</table>

Tabelle 11: Beispiele für häufig verwendete Gefahrstoffe im biologischen Laboratorium

71 Siehe Literaturverzeichnis Abschnitt 3
13 Brandschutz

Durch systematischen vorbeugenden Brandschutz kann in biologischen Laboratorien das Brandrisiko gering gehalten werden. Die Brandgefahr wird dabei durch die Brandlasten definiert (bereitgehaltene Menge an brennbaren Stoffen, technische Ausrüstung und Umgang mit brennbaren Stoffen).

Die Zugehörigkeit der Laboratorien zu einer Schutz- oder Sicherheitsstufe hat keinen Einfluss auf die Brandlast. Die technischen Anforderungen an die Brandschutzmaßnahmen steigen zwischen der Schutz- oder Sicherheitsstufe 2 und 3 stark an, da im Brandfall im Laboratorium der Schutz- oder Sicherheitsstufe 3 auch das Container aufrechterhalten werden muss.

Zum vorbeugenden Brandschutz gehören bauliche, anlagentechnische und organisatorische Brandschutzmaßnahmen, die im Folgenden dargestellt werden. Der abwehrende Brandschutz liegt im Ermessen der zuständigen Feuerwehr.

Brandlastminimierung

Die Brandlast ist auch in biologischen Laboratorien einschließlich deren Zusatzzräumen grundsätzlich zu minimieren. Anhand eines Schemas wird die Brandlast erhoben und die Laboratorien in drei Kategorien eingeteilt:

> Laboratorium mit normaler Brandgefahr:
 Tätigkeiten hauptsächlich mit wässrigen Lösungen und geringen Mengen an Lösungsmitteln

> Laboratorium mit erhöhter Brandgefahr:
 Tätigkeiten mit Lösungsmitteln im laborüblichen Handgebrauch (siehe TRGS 526 bzw. Nr. 3.3.3 der DGUV Information 213-850), beispielsweise vergleichbar im Umfang wie bei chemischen Laboratorien

> Laboratorium mit hoher Brandgefahr

Mikrobiologische und biologische Laboratorien sind so zu planen, dass sie sich möglichst in den beiden erstgenannten Kategorien befinden.

Da das Baurecht Landesrecht ist, können die erforderlichen Maßnahmen des vorbeugenden Brandschutzes je nach Bundesland variieren. Außerdem gelten die Anforderungen des Arbeitsstättenrechts.

Die nachfolgend genannten Brandschutzmaßnahmen sind als Hinweise zu verstehen, die bezüglich des Bundeslandes überprüft werden müssen und die sich aufgrund der durchgeführten Gefährdungsbeurteilung verändern können. Weitergehende Informationen zu diesem Thema und den nachfolgenden Unterkapiteln werden im Downloadcenter der BG RCI unter downloadcenter.bgrci.de (Suchbegriff: B 002) hinterlegt.

13.1 Baulicher Brandschutz

Alle Maßnahmen des Brandschutzes, die im Zusammenhang mit der Errichtung oder der Änderung von baulichen Anlagen getroffen werden, zählen zum baulichen Brandschutz, z. B.:

- die Bildung von Brandabschnitten, z. B. durch Brandwände,
- die Bemessung oder normgerechte Erstellung von tragenden und raumbeschließenden Konstruktionen, z. B. zum Schutz von Bereichen mit hoher Brandgefahr, aber auch
- die äußere Erschließung des Gebäudes mit Löschwasser und
- die Aufstell- und Bewegungsflächen für die Feuerwehr.
Wesentliche Kriterien für den baulichen Brandschutz sind dabei:
› das Brandverhalten von Baustoffen,
› der Feuerwiderstand der Bauteile,
› die Planung und Erstellung ausreichender Flucht- und Rettungswege sowie Sammelstellen.
Der bauliche Brandschutz umfasst die Anforderungen, die hinsichtlich des Schutzes des Gebäudes vor Feuereinwirkung erforderlich sind. Hierzu gehören die
› Auswahl geeigneter Baustoffe,
› die Unterteilung der Anlage in einzelne Bereiche (gegebenenfalls Laborräumlichkeiten), sogenannte Brandabschnitte, und
› die Brandabschottung von Trassen.

13.2 Technischer Brandschutz

Hierunter versteht man die Gesamtheit aller technischen Anlagen, deren Einsatz den grundlegenden Zielen des Brandschutzes dient.

Das Erfordernis der im Folgenden beispielhaft aufgeführten Punkte ergibt sich immer aus dem individuell zu erstellenden Brandschutzkonzept für die Schutz- und Sicherheitsstufen 1–4.

Hierzu gehören z. B.:
› Brandmeldeanlagen
› Stationäre Feuerlöschanlagen
› Rauchableitung
› Steuerung von technischen Lüftungsanlagen im Laboratorium
› Feststellanlagen für Türen mit Brand- und/oder Rauchschutzanforderungen
› Verriegelung von Türen im Verlauf von Flucht- und Rettungswegen
› Feuerlöscheinrichtungen, Feuerlöscher
› Sicherheitsschränke

13.3 Organisatorischer Brandschutz

Zum Organisatorischen Brandschutz gehören auch folgende Themen:
› Brandschutzordnung nach DIN 14096
› Fluchtwegen und Notausgänge
› Sammelstellen
› Flucht- und Rettungspläne
14 Maßnahmen in Notfällen und bei Störungen

14.1 Allgemeines

Um die Sicherheit und den Schutz der Gesundheit der Beschäftigten und anderer Personen bei einer Betriebsstörung, einem Unfall oder einem Notfall zu gewährleisten sowie den normalen Betriebsablauf wiederherzustellen, sind vor Aufnahme einer Tätigkeit der Schutzstufen 2 bis 4 entsprechend der Gefährdungsbeurteilung in einer Betriebsanweisung Notfallmaßnahmen festzulegen, die unter anderem Folgendes beinhalten:

1. Maßnahmen zur Ersten Hilfe und weitergehende Hilfsmaßnahmen für Beschäftigte bei unfallbedingter Übertragung von Biostoffen einschließlich der Möglichkeit zur postexpositionellen Prophylaxe,
2. Maßnahmen, um eine Verschleppung und Freisetzung von Biostoffen zu verhindern,
3. Desinfektions-, Inaktivierungs- oder Dekontaminationsmaßnahmen.

14.2 Verhalten im Gefahrenfall in den Schutzstufen 2 und 3

Treten Biostoffe in größerer Flüssigkeitsmenge aus, wie durch Verschütten oder Bruch von Kulturflaschen, sind die Beschäftigten zu warnen, das Laboratorium bzw. der Gefahrenbereich ist zu räumen und gegebenenfalls abzusperren (Wartezeit von ca. 1 Stunde, bis eventuell entstandene Aerosole sedimentiert sind). Die verantwortliche Person muss unverzüglich benachrichtigt werden.

Abbildung 56: Beseitigung freigesetzter Biostoffe unter Verwendung von PSA
Sämtliche kontaminierte Gegenstände, auch Laborkittel, sind in Autoklavierbeuteln zu sammeln und zu autoklavieren. Anschließend ist eine Reinigung gemäß Hygieneplan (siehe Kapitel 9.4 und Anhang 6) durchzuführen.

Bis zur Freigabe nach der Reinigung sind alle Türen und Fenster des gefährdeten Bereiches geschlossen zu halten und der Zutritt Unbefugter ist zu verhindern. An den Türen angebrachte Schilder müssen auf den Gefahrenzustand hinweisen.

Bei großflächigen Personenkontaminationen werden zunächst die betroffenen Kleidungsstücke ausgezogen und dann die kontaminierten Hautareale mit dem im Hygieneplan vorgegebenen Händedesinfektionsmittel mehrmals desinfiziert. Die kontaminierten Kleidungsstücke werden in einem Autoklavierbeutel gesammelt und autoklaviert.

Im Brandfall sind die allgemeinen Sicherheitsvorschriften zu befolgen. Im Falle eines außer Kontrolle geratenen Brandes geht Personenschutz (gegebenenfalls Dekontamination der verunfallten Person) vor Objektschutz und das Laboratorium wird über den Fluchtweg verlassen.

14.3 Verhalten im Gefahrenfall in der Schutzstufe 4

Droht die Freisetzung hochpathogener Biostoffe, so muss der Notfallplan Informationen über spezifische Gefahren, die Namen der für die Durchführung der Rettungsmaßnahmen zuständigen Personen sowie Angaben über den Umfang von Sicherheitsübungen und deren regelmäßige Durchführung enthalten. Der Notfallplan ist mit den zuständigen innerbetrieblichen und betriebsfremden Rettungs- und Sicherheitskräften abzustimmen und er ist so zu gestalten, dass die Sicherheitskräfte in der Lage sind, ihre Rettungs- und Gefahrenabwehrmaßnahmen festzulegen.

Außerdem sind Warnsysteme und Kommunikationsmöglichkeiten zur unverzüglichen Warnung der Beschäftigten und Alarmierung der Rettungs- und Sicherheitsdienste zu schaffen, deren Funktionstüchtigkeit gewährleistet ist.\(^{72}\)

14.4 Erste-Hilfe-Maßnahmen

Verletzungen im Laboratorium sind sofort mit einem geeigneten Antiseptikum (alkoholisches oder iodhaltiges Hautdesinfektionsmittel) zu desinfizieren, zu versorgen, anschließend der verantwortlichen Person mitzuteilen und in das Verbandbuch einzutragen. Gegebenenfalls ist eine Vorstellung beim Durchgangs- oder Betriebsarzt bzw. der Durchgangs- oder Betriebsärztin zu veranlassen.

\(^{72}\) Siehe Nr. 5.5 Abs. 35 der TRBA 100

Kontaminierte Personen sollen nach Möglichkeit am Unfallort verbleiben, um eine Verschleppung von infektiösen Biostoffen zu vermeiden.

Kontaminierte Haut wird mit dem im Hygieneplan (siehe Kapitel 9.4) vorgegebenen Desinfektionsmittel desinfiziert.

Hinweise für Erste Hilfe bei Unfällen mit Biostoffen (Kontaminationen von Personen) müssen im Arbeitsbereich sofort greifbar sein (z. B. Liste Ersthelferinnen und Ersthelfer, Augenduschen, Erste-Hilfe-Material, Notrufnummer).

14.5 Störungen in technischen Einrichtungen

Bei jedem Ausfall von technischen Einrichtungen oder bei Stromausfall ist die verantwortliche Person (z. B. Laborverantwortliche, Betriebsingenieure, Gerätebeauftragte) zu benachrichtigen. Auch die Leitung des Betriebs muss informiert werden.

Betrifft die Störung eine sicherheitsrelevante Einrichtung, z. B. ein Gerät wie die MSW oder andere lüftungstechnische Einrichtungen, sind die Tätigkeiten mit infektiösen Biostoffen sofort einzustellen, biologisches Material ist zu sichern und wegzuschließen.

15 Arbeitsmedizinische Vorsorge

Trotz technischer, organisatorischer und persönlicher Schutzmaßnahmen kann die Gefahr möglicher Gesundheitsschäden oder Erkrankungen bei bestimmten Tätigkeiten oder Arbeitsbedingungen nicht mit letzter Sicherheit ausgeschlossen werden. Nach der Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedVV) hat die Unternehmensleitung folgende Pflichten:

› Pflichtvorsorge veranlassen
› Angebotsvorsorge anbieten
› Wunschvorsorge ermöglichen

Die arbeitsmedizinische Vorsorge beinhaltet ein ärztliches Beratungsgespräch mit Anamnese, einschließlich Arbeitsanamnese sowie körperliche oder klinische Untersuchungen, soweit diese für die individuelle Aufklärung und Beratung erforderlich sind und der oder die Beschäftigte diese Untersuchungen nicht ablehnt. Sollen klinische Untersuchungen stattfinden, kann der Arzt bzw. die Ärztin hierzu die Empfehlungen aus den DGUV Grundsätzen heranziehen.

Mit der Durchführung der arbeitsmedizinischen Vorsorge ist entweder eine Fachärztin oder ein Facharzt für Arbeitsmedizin oder ein Arzt oder eine Ärztin mit der Zusatzbezeichnung „Betriebsmedizin“ zu beauftragen. Diese haben die Beratungen und Untersuchungen unter Beachtung der dem Stand der Arbeitsmedizin entsprechenden Regeln und Erkenntnisse durchzuführen. Die Ärztin oder der Arzt hat die ärztliche Schweigepflicht zu beachten.

15.1 Pflichtvorsorge

Die Unternehmensleitung hat nach Maßgabe des Anhangs der Verordnung zur arbeitsmedizinischen Vorsorge Pflichtvorsorge bei bestimmten, besonders gefährdenden Tätigkeiten für die Beschäftigten zu veranlassen. Bei Tätigkeiten mit Biostoffen sind die Anlässe für eine Pflichtvorsorge im Anhang Teil 2 Abs. 1 der Verordnung zur arbeitsmedizinischen Vorsorge aufgeführt. Die Pflichtvorsorge muss vor Aufnahme der Tätigkeit und anschließend in regelmäßigen Abständen veranlasst werden. Die Unternehmensleitung darf die Tätigkeit nur ausüben lassen, wenn zuvor eine Pflichtvorsorge durchgeführt worden ist, an der der oder die Beschäftigte teilgenommen hat.

15.2 Angebotsvorsorge

73 Siehe Literaturverzeichnis Abschnitt 3
Angaben zu den Fristen für die arbeitsmedizinische Vorsorge bei Pflicht- und Angebotsvorsorgen sind in der Arbeitsmedizinischen Regel AMR 2.1 „Fristen für die Veranlassung/das Angebot arbeitsmedizinischer Vorsorge“ zu finden.

15.3 Wunschvorsorge

Über die Vorsorgeanlässe des Anhangs der Verordnung zur arbeitsmedizinischen Vorsorge hinaus hat die Unternehmensleitung den Beschäftigten auf deren Wunsch hin regelmäßig arbeitsmedizinische Vorsorge zu ermöglichen. Der Anspruch auf eine Wunschvorsorge besteht nur dann nicht, wenn aufgrund der Beurteilung der Arbeitsbedingungen und der getroffenen Schutzmaßnahmen nicht mit einem Gesundheitsschaden zu rechnen ist.74

15.4 Impfungen

Impfungen sind Bestandteil der arbeitsmedizinischen Vorsorge und den Beschäftigten anzubieten, soweit das Risiko einer Infektion tätigkeitsbedingt und im Vergleich zur Allgemeinbevölkerung erhöht ist und der oder die betroffene Beschäftigte nicht bereits über einen ausreichenden Immunschutz verfügt. Die AMR 6.5 „Impfungen als Bestandteil der arbeitsmedizinischen Vorsorge bei Tätigkeiten mit biologischen Arbeitsstoffen“ konkretisiert unter anderem, wie die Unternehmensleitung und der Betriebsarzt oder die Betriebsärztin die Verpflichtung zu Impfungen nach der Verordnung zur arbeitsmedizinischen Vorsorge erfüllen können, wenn es sich nach der Gefährdungsbeurteilung um Tätigkeiten mit einem impfpräventablen Erreger handelt. Beschäftigte können Impfangebote annehmen oder ablehnen und dürfen ihre Tätigkeit auch bei Ablehnung von Impfangeboten weiter ausüben. Hält der Betriebsarzt oder die Betriebsärztin wegen eines fehlenden Immunschutzes einen Tätigkeitswechsel für angezeigt, darf diese Mitteilung nur mit Einverständnis der oder des Beschäftigten erfolgen.75

15.5 Dokumentation

Mit einer Vorsorgebescheinigung teilt der Betriebsarzt bzw. die Betriebsärztin der Unternehmensleitung sowie dem oder der Beschäftigten mit, wann und aus welchem Anlass bzw. aus welchen Anlässen eine arbeitsmedizinische Vorsorge stattgefunden hat und wann die nächste arbeitsmedizinische Vorsorge notwendig ist. Die Vorsorgebescheinigung enthält keine Angaben zu medizinischen Befunden und Diagnosen oder Aussagen zur gesundheitlichen Bedenklichkeit oder Unbedenklichkeit der Tätigkeit für die jeweilige Person.76

Die Unternehmensleitung führt eine Vorsorgekartei, die die Angaben enthält, wann und aus welchen Anlässen arbeitsmedizinische Vorsorge stattgefunden hat. Die Beschäftigten erhalten bei Beendigung des Beschäftigungsverhältnisses eine Kopie der sie betreffenden Angaben.

Bei Tätigkeiten, die zu Berufskrankheiten gemäß der Berufskrankheiten-Verordnung (BKV) führen können, müssen die ärztlichen Unterlagen der arbeitsmedizinischen Vorsorge mindestens 40 Jahre aufbewahrt werden. Diese Aufbewahrungsfristen gelten für alle Formen der arbeitsmedizinischen Vorsorge.

Alle anderen ärztlichen Unterlagen zur Vorsorge nach der Verordnung zur arbeitsmedizinischen Vorsorge sind nach der letzten Vorsorge weitere 10 Jahre aufzubewahren.77

74 Siehe Arbeitsmedizinische Empfehlung „Wunschvorsorge“
75 Siehe auch Arbeitsmedizinische Regel AMR 6.4 „Mitteilungen an den Arbeitgeber nach § 6 Abs. 4 ArbMedVV“
76 Siehe Arbeitsmedizinische Regel AMR 6.3 „Vorsorgebescheinigung“
77 Siehe Arbeitsmedizinische Regel AMR 6.1 „Fristen für die Aufbewahrung ärztlicher Unterlagen“
16 Beschäftigungsbeschränkungen

Bei Tätigkeiten mit Biotoxinen sind aus verschiedenen rechtlichen Bestimmungen Beschäftigungsbeschränkungen und -verbote zu beachten:

Mutterschutzgesetz

Nach Mutterschutzgesetz (MuSchG) muss die Unternehmensleitung unabhängig davon, ob im Unternehmen eine schwangere oder stillende Frau beschäftigt wird, im Rahmen der allgemeinen arbeitsschutzrechtlichen Beurteilung der Arbeitsbedingungen nach § 5 Arbeitsschutzgesetz auch für jede Tätigkeit die Gefährdungen prüfen, denen eine schwangere oder stillende Frau oder ihr Kind ausgesetzt ist oder sein kann, und ermitteln, ob mutterschutzrechtliche Schutzmaßnahmen erforderlich sind.78

Nach § 11 Abs. 2 bzw. § 12 Abs. 2 Mutterschutzgesetz darf die Unternehmensleitung eine schwangere bzw. stillende Frau keine Tätigkeiten ausüben lassen und sie keinen Arbeitsbedingungen aussetzen, bei denen sie in einem Maß mit Biotoxinen der Risikogruppe 2 oder 3 oder im Sinne von § 3 Abs. 1 Biostoffverordnung in Kontakt kommt oder kommen kann, dass dies für sie oder für ihr Kind eine unverantwortbare Gefährdung darstellt. Das Verbot gilt auch, wenn der Kontakt mit diesen Biotoxinen therapeutische Maßnahmen erforderlich macht oder machen kann, die selbst eine unverantwortbare Gefährdung darstellen.

Expizit benennt das Mutterschutzgesetz ein Verbot für eine schwangere oder stillende Frau hinsichtlich Tätigkeiten und Arbeitsbedingungen, bei denen sie mit Biotoxinen, die in Risikogruppe 4 im Sinne von § 3 Abs. 1 Biostoffverordnung einzu-stufen sind, in Kontakt kommt oder kommen kann. Darüber hinaus darf eine schwangere Frau keine Tätigkeiten ausüben und keinen Arbeitsbedingungen ausgesetzt sein, bei denen sie mit dem Rötelnvirus oder mit *Toxoplasma gondii* in Kontakt kommt oder kommen kann.

Eine unverantwortbare Gefährdung gilt als ausgeschlossen, wenn die schwangere oder stillende Frau (z. B. aufgrund einer Impfung oder einer durchlaufenen Infektion) über einen ausreichenden nachgewiesenen Immunschutz verfügt. Ein eindeutiger Nachweis ist nur mittels Titerbestimmung gewährleistet.

Schwangere und stillende Frauen dürfen nicht mit humanpathogenen Mikroorganismen arbeiten. Bereits ab Schutzstufe 1 sind im Rahmen der Gefährdungsbeurteilung Expositionen gegenüber toxischen und sensibilisierenden Biotoxinen sowie die zytotoxischen Eigenschaften antibiotisch wirkender Zytostatika zu berücksichtigen.

Nach Mutterschutzgesetz soll eine schwangere Frau der Unternehmensleitung ihre Schwangerschaft mitteilen, sobald sie weiß, dass sie schwanger ist. Ebenso soll eine stillende Frau die Unternehmensleitung so früh wie möglich darüber informieren, dass sie stillt.

Jugendarbeitsschutzgesetz

Ein Beschäftigungsverbot besteht auch bei fehlender arbeitsmedizinischer Pflichtvorsorge (Pflichtvorsorge nach der Verordnung zur arbeitsmedizinischen Vorsorge).

Einzelheiten zur arbeitsmedizinischen Vorsorge enthält das Kapitel 15.

78 § 10 MuSchG; siehe auch „Arbeitgeberleitfaden zum Mutterschutz“ (Stand: 01.01.2018) des Bundesministeriums für Familie, Senioren, Frauen und Jugend unter www.bmfsfj.de/bmfsfj/service/publikationen/arbeitgeberleitfaden-zum-mutterschutz/121660
17 Qualifikationsanforderungen an Verantwortliche und Beschäftigte

Die fachkundige Erstellung der Gefährdungsbeurteilung gehört zur zentralen Verantwortung der Unternehmensleitung, um Beschäftigte vor Gefährdungen durch infektiöse, sensibilisierende, toxische oder sonstige die Gesundheit schädigende Wirkungen von Biostoffen zu schützen. Falls die Unternehmensleitung nicht selbst über die erforderlichen Kenntnisse verfügt, muss sie sich fachkundig beraten lassen.

Die verantwortliche Person ist verpflichtet, sich regelmäßig davon zu überzeugen, dass die Beschäftigten sich sicherheitsgerecht verhalten, Fehlverhalten minimiert wird und die Beschäftigten in regelmäßigen Abständen unterwiesen bzw. fortgebildet werden.

17.1 Anforderungen nach BioStoffV

Vor Aufnahme von Tätigkeiten der Schutzstufe 3 oder 4 hat die Unternehmensleitung eine fachkundige Person zu benennen, die sie bei der Gefährdungsbeurteilung und sonstigen sicherheitstechnischen Fragestellungen berät und sie bei der Kontrolle der Wirksamkeit der Schutzmaßnahmen und der Durchführung von Unterweisungen unterstützt. Außerdem überprüft die benannte fachkundige Person die Einhaltung der Schutzmaßnahmen.

Grundsätzlich sind die Anforderungen an die Fachkunde, die sich aus den Komponenten Berufsausbildung, Berufserfahrung und der Kompetenz im Arbeitsschutz zusammensetzt, abhängig von der jeweiligen Art der Aufgabe und der Höhe der Gefährdung. Die Kompetenz im Arbeitsschutz beschreibt hierbei die Kenntnisse und Fähigkeiten, Gefährdungen in Abhängigkeit der durchgeführten Tätigkeiten und vorhandenen Biostoffen zu beurteilen und alle erforderlichen Schutzmaßnahmen festzulegen.

Die Fachkunde muss nicht zwingend von einer Person abgedeckt werden, sondern die Unternehmensleitung kann sich von mehreren Personen fachkundig beraten lassen. Dies ist entsprechend zu dokumentieren.

In Abhängigkeit von der Aufgabe und der Höhe der Gefährdung kann zusätzlich die Teilnahme an spezifischen Fortbildungsmaßnahmen erforderlich sein (§ 2 Abs. 11 Biostoffverordnung). Beispiele für benötigte Kenntnisse und Fähigkeiten sind in Anhang 1 der TRBA 200 „Anforderungen an die Fachkunde nach Biostoffverordnung“.

17.2 Anforderungen nach GenTSV

17.3 Anforderungen nach IfSG/TierSeuchErV

17.4 Anforderungen nach GefStoffV

Die Gefährdungsbeurteilung bei Tätigkeiten mit Gefahrstoffen nach § 6 Gefahrstoffverordnung (GefStoffV) darf nur von fachkundigen Personen durchgeführt werden. Verfügt der Arbeitgeber nicht selbst über die entsprechenden Kenntnisse, hat er sich fachkundig beraten zu lassen.

Die Fachkunde setzt sich aus den Komponenten „berufliche Qualifikation“ und „spezifische fachliche Kompetenzen“ zusammen.

Die berufliche Qualifikation setzt eine entsprechende Berufsausbildung oder Berufserfahrung oder eine zeitnah ausgeübte entsprechende berufliche Tätigkeit voraus. Dabei werden bereits Teile der notwendigen spezifischen fachlichen Kompetenzen erworben.

Die Vervollständigung der spezifischen fachlichen Kompetenzen kann durch die Teilnahme an Fortbildungsveranstaltungen erworben werden. Grundanforderungen an solche Fortbildungsmaßnahmen als Bestandteil der Fachkunde sind im DGUV Grundsatz 313-003 beschrieben.
Anhang 1: Grundregeln guter mikrobiologischer Technik (GMT)

› Fenster und Türen der Arbeitsbereiche sollen während der Arbeiten geschlossen sein.
› In den Arbeitsräumen darf nicht getrunken, gegessen, geraucht, Schnupftabak benutzt oder geschminkt werden. Nahrungsmitel dürfen im Arbeitsbereich nicht aufbewahrt werden.
› Bei Tätigkeiten, die eine hygienische Händedesinfektion erfordern, dürfen an Händen und Unterarmen keine Schmuckstücke, Uhren und Eheringe getragen werden.
› Laborkittel oder andere Schutzkleidung müssen im Arbeitsbereich getragen werden.
› Mundpipettieren ist untersagt. Pipettierhilfen sind zu benutzen.
› Spritzen und Kanülen sollen nur wenn unbedingt nötig benutzt werden.
› Bei allen Tätigkeiten muss darauf geachtet werden, dass eine Aerosolbildung soweit möglich vermieden wird.
› Nach Beendigung der Tätigkeiten und vor Verlassen des Arbeitsbereiches müssen die Hände sorgfältig gewaschen, gegebenenfalls desinfiziert und (außerhalb des Arbeitsbereiches) rückgefettet (Hautschutzplan) werden.
› Die Identität/Reinheit der benutzten Biostoffe ist regelmäßig zu überprüfen, wenn das für die Beurteilung des Gefährdungspotenzials erforderlich ist. Die zeitlichen Abstände richten sich nach dem Gefährdungspotenzial.
› Bei Tätigkeiten mit Biostoffen sind die Beschäftigten vor Aufnahme der Tätigkeit und danach mindestens einmal jährlich mündlich und arbeitsplatzbezogen zu unterweisen.
› In der Mikrobiologie, Virologie, Zellbiologie oder Parasitologie unerfahrene Beschäftigte müssen besonders umfassend unterrichtet, sorgfältig angeleitet und überwacht werden.
› Zur Vermeidung von Kontaminationen sind Kenntnisse und praktische Erfahrungen von aseptischen Arbeitstechniken erforderlich.
› Ungeziefer muss, wenn nötig, regelmäßig und fachkundig bekämpft werden.
Anhang 2: Vorlage für eine Gefährdungsbeurteilung nach Biostoffverordnung für Laboratorien

Gefährdungsbeurteilung nach § 4 Biostoffverordnung

1 Grundinformationen
1.1 Name und Anschrift der Dienststelle

<table>
<thead>
<tr>
<th>Name, Vorname:</th>
<th>Funktion:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Gefährdungsbeurteilung wurde durchgeführt am:

1.2 Allgemeine Bezeichnung der Tätigkeiten mit Biostoffen

<table>
<thead>
<tr>
<th>Fachkraft für Arbeitssicherheit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

1.3 Verantwortliche Personen/fachkundige Person

<table>
<thead>
<tr>
<th>Name, Vorname:</th>
<th>Funktion:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bemerkungen:

1.4 Beteiligte Personen an der Gefährdungsbeurteilung

<table>
<thead>
<tr>
<th>Fachkraft für Arbeitssicherheit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Betriebsarzt/ Betriebsärztin:

Personalrat/ Betriebsrat:

Sonstige:

1.5 Bezeichnung, Lage und räumlicher Umfang der betroffenen Arbeitsplätze

<table>
<thead>
<tr>
<th>Bezeichnung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebäude:</td>
</tr>
<tr>
<td>Räume:</td>
</tr>
</tbody>
</table>

1.6 Zulassungen/Genehmigungen/Erlaubnisse zur Durchführung von Arbeiten mit Biostoffen

Werden zulassungspflichtige Arbeiten durchgeführt? □ Ja □ Nein

Wenn ja:

<table>
<thead>
<tr>
<th>Rechtsgrundlage</th>
<th>Aktenzeichen des Bescheides</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 15 Biostoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 49 IfSG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 11 GenTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 12 GenTG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Informationen gemäß § 4 Abs. 3 BioStoffV

2.1 Biostoffe

Identität der Mikroorganismen

<table>
<thead>
<tr>
<th>Organismus</th>
<th>Risikogruppe/ Quelle<sup>80</sup></th>
<th>Pathogenität</th>
<th>Übertragungs- weg<sup>81</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/</td>
<td>☐ □</td>
<td>☐ □</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>☐ □</td>
<td>☐ □</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>☐ □</td>
<td>☐ □</td>
</tr>
</tbody>
</table>

Humanmaterial

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Infektionsstatus bekannt</th>
<th>Kontaminanten</th>
<th>Risikogruppe/ Quelle<sup>80</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollblut</td>
<td>☐</td>
<td>☐ □</td>
<td>/</td>
</tr>
<tr>
<td>Serum/Plasma</td>
<td>☐</td>
<td>☐ □</td>
<td>/</td>
</tr>
<tr>
<td>Gewebe</td>
<td>☐</td>
<td>☐ □</td>
<td>/</td>
</tr>
<tr>
<td>Zellen, primär</td>
<td>☐</td>
<td>☐ □</td>
<td>/</td>
</tr>
<tr>
<td>etablierte Zelllinien*</td>
<td>☐</td>
<td>☐ □</td>
<td>/</td>
</tr>
</tbody>
</table>

* Mensch-Maus-Hybridzellen

⁸⁰ EU-Liste = EU, B-Merkblätter = BM, ZKBS-Liste = ZB, ZKBS-Stellungnahme = ZS, Eigene Einstufung = EE

⁸¹ Stich- und Schnittverletzungen = 1, aerogen = 2, Ingestion = 3, unbekannt = 4
Tiere/tierisches Material – pflanzliches Material

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Infektionsstatus bekannt</th>
<th>Kontaminanten</th>
<th>Risikogruppe/Quelle(^{80})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja positiv</td>
<td>negativ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Ja negativ</td>
<td>negativ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Ja positiv</td>
<td>negativ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Ja negativ</td>
<td>negativ</td>
<td>/</td>
</tr>
</tbody>
</table>

Sensibilisierende/toxische Wirkungen
Sind weitere Gefährdungen/Erkrankungen, z. B. über sensibilisierende/toxische Wirkungen der Biostoffe, bekannt?

☐ Ja ☐ Nein ☐ Nicht bekannt

Wenn ja, welche? Bitte geben Sie auch die Übertragungswege an.

2.2 Tätigkeiten
Machen Sie Angaben zu Art und Dauer der Tätigkeiten, Übertragungswege, Höhe und Häufigkeit der Exposition.

2.3 Substitution
Machen Sie Angaben zur Möglichkeit des Einsatzes von Biostoffen, Arbeitsverfahren oder Arbeitsmitteln, die zu keiner oder einer geringeren Gefährdung der Beschäftigten führen würden.
3 Beurteilung der Tätigkeit

Bitte beschreiben Sie die durchgeführte Tätigkeit (§ 4 Abs. 3 BioStoffV).

3.1 Art der Tätigkeit
☐ gezielte Tätigkeit ☐ nicht gezielte Tätigkeit

3.2 Zuordnung zu einer Schutzstufe

<table>
<thead>
<tr>
<th>Einstufung der Biostoffe in Risikogruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Risikogruppe 1 ☐ Risikogruppe 3 ☐ Risikogruppe 4</td>
</tr>
<tr>
<td>☐ Risikogruppe 2 ☐ Risikogruppe 3** 82</td>
</tr>
</tbody>
</table>

☐ Ja ☐ Nein

Zuordnung zu einer Schutzstufe gemäß § 5 BioStoffV:
☐ 1 ☐ 2 ☐ 3 ☐ 3** 83 ☐ 4

3.3 Tätigkeitsbezogene Gefährdungen

Mögliche Gefahren (Expositions-/Infektionsgefahren) bei der bestimmungsgemäßen Verwendung und bei Unfällen/Störfällen

4 Erforderliche Schutzmaßnahmen

Beschreiben Sie insbesondere die technischen Schutzmaßnahmen.

82 Risikogruppe 3**: keine Übertragung über den Luftweg gegeben – Stoffe nach § 2 Abs. 6 BioStoffV
83 Schutzstufe 3** zusätzliche Schutzmaßnahmen zur Schutzstufe 2 für RG 3** – Stoffe nach Nr. 5.4.1 TRBA 100
4.1 Werden die Vorgaben der TRBA eingehalten?

<table>
<thead>
<tr>
<th></th>
<th>Ja</th>
<th>Nein</th>
<th>Nicht relevant</th>
<th>Wenn nein, Begründung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBA 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRBA 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRBA 240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRBA 250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRBA 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Sind folgende organisatorische Schutzmaßnahmen umgesetzt?

- Zugangsbeschränkung
 - Ja
 - Nein
 - Nicht relevant
- Betriebsanweisung gemäß § 14 Abs. 1 BioStoffV
 - Ja
 - Nein
- Unterweisung gemäß § 14 Abs. 2 BioStoffV
 - Ja
 - Nein
- Hygieneplan
 - Ja
 - Nein
- Allgemeine Arbeitsmedizinische Beratung gemäß § 12 BioStoffV
 - Ja
 - Nein
- Arbeitsanweisungen gemäß § 14 Abs. 4 BioStoffV
 - Ja
 - Nein
 - Nicht relevant
- Arbeitsmedizinische Vorsorge
 - Angebotsvorsorge
 - Ja
 - Nein
 - Nicht relevant
 - Pflichtvorsorge
 - Ja
 - Nein
 - Nicht relevant
 - Immunisierungsangebot
 - Ja
 - Nein
 - Nicht relevant

4.3 Welche persönliche Schutzausrüstung steht zur Verfügung (§ 8 Abs. 4 BioStoffV)?

Hinweis: Falls sensibilisierende oder toxische Wirkungen der Biostoffe vorliegen, ist hierfür eine ergänzende Gefährdungsbeurteilung durchzuführen (siehe Nr. 5.4 – 5.5 TRBA 400).

5 Umsetzung der Schutzmaßnahmen

Sind alle erforderlichen Schutzmaßnahmen umgesetzt?

- Ja
- Nein

<table>
<thead>
<tr>
<th>Folgende Maßnahmen werden umgesetzt</th>
<th>bis (Datum)</th>
<th>Verantwortliche Person für die Umsetzung</th>
<th>Unterschrift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Wirksamkeitsprüfung der Maßnahmen

Die Gefährdungsbeurteilung vom wurde am überprüft.

<table>
<thead>
<tr>
<th>Ergebnis der Überprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

6.1 Wiederholungsprüfung

<table>
<thead>
<tr>
<th>Geplant am</th>
<th>Durchgeführt am</th>
<th>Durch wen? Verantwortliche/r</th>
<th>Unterschrift</th>
<th>Beteiligte Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Kenntnisnahme der Verantwortlichen/Beteiligten

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Name</th>
<th>Ort, Datum</th>
<th>Unterschrift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitgeber/Arbeitgeberin:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor-/Projektleitung:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachkraft für Arbeitssicherheit:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsarzt/Betriebsärztin:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personalrat/Betriebsrat:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 3: Musterbetriebsanweisung Stickstoff (tiefkalt, flüssig)

Betriebsanweisung
Stickstoff (tiefkalt, flüssig)

Organisationseinheit:
Arbeitsplatz/Tätigkeit:
CAS: 7727-37-9; EG-Nr. (EINECS): 231-783-9; farb- und geruchlos

Stand:
Fachkraft für Arbeitssicherheit
Unterschrift: ..
Verantwortliche Person
Unterschrift: ..

Nr.: Gefahren für Mensch und Umwelt

• Gasförmiger Stickstoff (N2) ist schwerer als Luft, bildet kalte Nebel, kann sich in geschlossenen Räumen meist am Fußboden oder in tiefer gelegenen Bereichen als unsichtbares, geruchloses, geschmackloses Gas ansammeln
• Tiefkältes Gas; kann Erfrischanfälle, Kälteverletzungen, schwere Augenschäden verursachen
• Erstickungsgefahr (insbesondere bei Ab- und Umfüllvorgängen): Flüssiger Stickstoff (Siedetemperatur –196 °C) setzt erhebliche Mengen gasförmigen Stickstoffs frei, der den Luftsauerstoff verdrängt:
 aus 1 Liter flüssigem Stickstoff entstehen ca. 690 Liter gasförmiger Stickstoff; je nach Inhalationsdauer und restlicher Sauerstoffkonzentration: Schlaflosigkeit, Unwohlsein, Blutdruckanstieg, Atemnot, Ohnmacht, Tod
• Sauerstoffanreicherung: Bei offener Anwendung (offene Gefäße) kann aus der Luft Sauerstoff kondensieren (hellblaue Farbe), wodurch allmählich eine Anreicherung mit stark brandförderndem flüssigem Sauerstoff erfolgt (Bildung explosionsfähiger Gemische)
• Berstgefahr bei fest verschlossenen Behältern ohne Druckausgleich (Splitterwirkung)
• Auslaufende Flüssigkeit kann bei Kunststoffgefäßen zur Kälteversprödung (Bruchgefahr) führen

Schutzmaßnahmen und Verhaltensregeln

Substitution:
• Ersatzmöglichkeit durch Ultratiefkühlschrank (ca. –150 °C) prüfen

Technische Schutzmaßnahmen:
• automatisch optisch und akustisch arbeitendes Sauerstoffmangelanzeigegerät (Anzeige außerhalb des Raumes): in Ausnahmefällen Verwendung mobiler Gaswarngeräte zur Sauerstoffmangelanzeige
• Bodennähe Absaugung
• Aufstellung der Lagerbehälter auf großflächig bemessener Edelstahlplatte
• Nur in saubere und trockene Vorraumräume (Kryobehälter bzw. ummantelte Dewargefäße) abfüllen
• Lagerbehälter mit einer Kippprichtung oder einer Transferpumpe ausstatten
• Apparaturen u. Ä. vor der Füllung gut trocknen
• Absperrmaterien nicht ruckartig betätigen
• Vereinzelungen an Apparaturen oder Behältern nur mit warmer Luft oder lauwarmem Wasser auftauen. Betroffenen Bereich nicht reiben

Organisatorische Schutzmaßnahmen:
• Vor Aufnahme der Tätigkeit Beschäftigte anhand Betriebsanweisung und Gefährdungsbeurteilung mündlich unterweisen (mit Dokumentation); regelmäßig wiederholen
• Behälter an einem kühlen, gut gelüfteten Ort aufbewahren
• Behälter niemals fest verschorren
• Behälter gegen Umstürzen sichern
• Kontakt mit Flüssigkeit vermeiden
• Gefäße mit flüssigem Stickstoff nie unnötig lange offen stehen lassen, um eine Sauerstoffanreicherung zu vermeiden
• Eindringen von Wasser verhinden, nicht zurückschütten
Schutzmaßnahmen und Verhaltensregeln

Transport:
- Lagerung und Transport nur in geeigneten Behältern mit Druckausgleichsoffnungen oder Überdrucksicherung
- Behälter stets geschlossen, jedoch nicht druckdicht halten, Verschütten vermeiden
- Keine Kunststoffbehälter verwenden (Kälteversprödung und Bruchgefahr)
- Lagern, Abfüllen und Verwenden nur in Räumen mit guter Lüftung, Füllmarken beachten, Behälter nicht unbeaufsichtigt lassen
- Lagerräume und/oder Abfüllräume ohne ausreichende technische Lüftung mit Sauerstoffmangelanzeiger ausstatten
- In Aufzügen stets ohne gleichzeitige Personenbeförderung transportieren
- Schild: „Gefahrguttransport – nicht zusteigen!"
- Der Transport im öffentlichen Raum hat nach ADR-Richtlinien zu erfolgen

Persönliche Schutzausrüstung:
- Schutzhandschuhe mit Kälteisolierung (z. B. aus Leder, wattierter Stoff) sowie wegen Spritzgefahr Geisichtsschild/Augenschutz (dichtschließende Schutzbrille) tragen
- Die Kleidung sollte alle Körperteile bedecken, die mit flüssigem Stickstoff in Berührung kommen können, Hosen müssen über die Schuhschläfen reichen
- Geschlossene Schuhe tragen
- Beim Umgang mit größeren Mengen umgebungsluftunabhängiges Atemschutzgerät außerhalb des Raumes bereitstellen, in dessen Handhabung ist gesondert einzuweisen (erforderlich für Personenrettung)

Verhalten im Gefahrfall/bei Störungen

Beim Auslaufen/Verschütten von flüssigem Stickstoff oder bei Sauerstoffmangelalarm:
- Raum sofort verlassen, für ausreichend Frischluftzuführung sorgen
- Andere Personen warnen
- Beim Betreten des Bereiches umluftunabhängiges Atemschutzgerät benutzen, sofern nicht die Ungefährlichkeit der Atmosphäre nachgewiesen ist
- Falls gefahrlos möglich, weiteres Auslaufen von flüssigem Stickstoff verhindern

Verhalten bei Unfällen; Erste Hilfe

Allgemein:
- Ventil schließen, Unfallstelle sichern, eintreffendes Hilfspersonal auf bestehende Gefahren hinweisen, Informationen der eingesetzten Stoffe bereithalten, Verantwortliche Person informieren

Bei Körperkontakt mit flüssigem Stickstoff:
- Verletzte Person an einen warmen Ort bringen, Benetzte Kleidungsstücke soweit möglich entfernen, Betroffen Hautstellen mit großen Mengen lauwarmem Wasser übergehen und anschließend locker mit sterilen Verbandsmaterial bedecken

Augenkontakt:
- Sofort mindestens 15 Minuten mit Wasser spülen

Einatmen:
- Zufuhr von viel Frischluft; ggfl. künstliche Beatmung

Notfallplan beachten!
- Erste Hilfe-Maßnahmen einleiten/Ersthelferin bzw. Ersthelfer alarmieren:
 - Telefon siehe Vordruck „Verhalten bei Unfällen“ (liegt an den Telefonen aus)
 - Vorgesetzte bzw. Vorgesetzten informieren
- Im Nachgang Eintrag in das elektronische Verbandbuch (Intranet) vornehmen

Prüfungen/Instandhaltung/Entsorgung

- Nicht ins Abwasser geben (Gefahr der Rohrschädigung)
- Reste flüssiger Stickstoffe im Freien abdampfen lassen
- Es ist zu gewährleisten, dass nur regelmäßig überprüfte Arbeitsmittel benutzt werden

Bei Fragen wenden Sie sich bitte an die verantwortliche Person
Anhang 4: Mustervorlagen für Freigabescheine

a) für Geräte

Begleitzettel an Geräten aus biologischen Laboratorien für Montage-, Wartungs-, Reparaturarbeiten als Hinweis für Werkstatt, Versand und Entsorgung

<table>
<thead>
<tr>
<th>Werkstatt</th>
<th>Versand</th>
<th>Entsorgung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerätebezeichnung:</td>
<td>Modell/Typ:</td>
<td></td>
</tr>
<tr>
<td>Gebäude:</td>
<td>Raum:</td>
<td>Inventar-Nr.:</td>
</tr>
<tr>
<td>Ansprechperson bei Rückfragen:</td>
<td>Name:</td>
<td>Abteilung:</td>
</tr>
</tbody>
</table>

Wurde dieses Gerät für Arbeiten mit biologischem Material benutzt, von denen eine Gefährdung ausgehen kann?

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nein</th>
<th>unbekannt</th>
</tr>
</thead>
</table>

1. Kontakt mit weiteren Substanzen, von denen eine Gefährdung ausgehen kann?

Gefährdungsart:

- brennbar (leicht/hochentzündlich) Stoffbezeichnung:
 ätzend/reizend Stoffbezeichnung:
- giftig Stoffbezeichnung:
 Spezifische Zielorgan-Toxizität Stoffbezeichnung:
- explosionsgefährlich Stoffbezeichnung:
 radioaktiv Stoffbezeichnung:

2. Das Gerät wurde sachgemäß gereinigt/desinfiziert/dekontaminiert

<table>
<thead>
<tr>
<th>außen</th>
<th>Nein</th>
<th>Bemerkung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>innen</td>
<td>Alle zugänglichen Regionen?</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Wurde ein reinigender/desinfizierender Spülgang zur Dekontamination der Schläuche etc. durchgeführt?

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nein</th>
<th>Bemerkung:</th>
</tr>
</thead>
</table>

Nutzerin/Nutzer*:

Unterschrift: Datum:

HINWEIS für Werkstatt/Servicepersonal

Wurde das Gerät nicht sachgemäß desinfiziert/dekontaminiert und gereinigt oder bleibt ein Restrisiko, muss das Gerät mit Schutzmaßnahmen gehandhabt werden, um einer eventuellen Gefährdung wirksam vorzubeugen!

Bearbeitet von:

Unterschrift: Datum:

* Trägerin/Träger der Verkehrssicherungspflichten
b) für Räume bei Umbaumaßnahmen

<table>
<thead>
<tr>
<th>Freigabeschein für Räume bei Umbaumaßnahmen*</th>
<th>Version: Stand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebäude: Raum/Räume:</td>
<td></td>
</tr>
<tr>
<td>Wurden in den Räumen Arbeiten mit Gefahrstoffen bzw. Biostoffen durchgeführt, von denen eine Gefährdung ausgehen kann (Zutreffendes ankreuzen)?</td>
<td>Ja (siehe Tabelle unten) nein (keine weiteren Angaben nötig)</td>
</tr>
<tr>
<td>Gefährdungsart (ankreuzen, falls zutreffend):</td>
<td>Maßnahmen:</td>
</tr>
<tr>
<td>Biostoffe (ab Risikogruppe 2)</td>
<td>wurden inaktiviert/fachgerecht entsorgt</td>
</tr>
<tr>
<td>Gefahrstoffe (fest, flüssig, inkl. Druckgasflaschen)</td>
<td>wurden fachgerecht entsorgt</td>
</tr>
<tr>
<td>Chemikalien ohne Gefahrensymbol</td>
<td>wurden fachgerecht entsorgt</td>
</tr>
</tbody>
</table>

Der Raum wurde sachgemäß gereinigt (ggf. zusätzlich: dekontaminiert/desinfiziert)
Bemerkungen (z. B. Besonderheiten, Restrisiko):

Böden + Waschbecken	Ja Nein
Schreibtische	Ja Nein
Schränke innen/außen	Ja Nein
Türklinken/Telefon/Tastaturen	Ja Nein
Geräte:	
MSW (Mikrobiologische Sicherheitswerkbank) + Freigabeschein	Ja Nein keine
Laborabzug	Ja Nein keine
Sicherheitsschränke (Lösemittel-, Säure-Laugen-, Gift-Schrank)	Ja Nein keine
Kühlergeräte (+ Begleitzettel am Gerät)	Ja Nein keine
Verbleibende Laborgeräte (+ Begleitzettel am Gerät)	Ja Nein keine
Verbrauchsmaterial, Unterlagen usw. komplett aus Raum entfernt	Ja Nein

Ergänzende Informationen

| Raumverantwortliche(r)/Laborleitung (Ansprechperson des abgebenden Bereichs bei Rückfragen): | Name: | Abt./Tel.: | Unterschrift: | Datum: |
| Abteilungsleitung: | Name: | Abt./Tel.: | Unterschrift: | Datum: |

Meldung an:

* von dem/der Raumverantwortlichen auszufüllen und sichtbar an Zugangstür zum Raum/Bereich anzubringen
Anhang 5: Checkliste zur Ermittlung der Prüffristen für wiederkehrende Prüfungen von Labor- und Analysengeräten

Prüfevante Sicherheitsaspekte leiten sich aus den jeweiligen Einsatzbedingungen ab. Grundsätzlich sollten im Rahmen einer Gefährdungsbeurteilung zunächst folgende Fragen gestellt werden:

1. Sind kritische Komponenten (z. B. Geräteanschlüsse, Stecker, Kabel) für eine regelmäßige Sichtkontrolle gut zugänglich?
2. Sind alle Sicherheitseinrichtungen (z. B. Temperaturanzeige, Druckanzeige) vollständig, gut erkennbar und funktionsfähig?
3. Enthalten die Herstellerunterlagen (Handbücher, Schaltpläne, Anleitungen und Ähnliches) Vorgaben für Prüfungen?
4. Wird eine regelmäßige Funktionsprüfung durchgeführt?
 Bei Tischzentrifugen zeigt ein Funktionstest mit leerem Rotor meist schon, ob z. B. eine Unwucht vorliegt.
5. Wird die wiederkehrende elektrische Prüfung der ortsfesten und ortsbeweglichen elektrischen Geräte regelmäßig durchgeführt?
 a. In welche dieser beiden Kategorien ist das Gerät eingeteilt?
 b. Sind aufgrund der Laborbedingungen (Umgebung, Klima, Temperaturschwankungen) und der Nutzung (häufiger Standortwechsel, korrosive Medien) kürzere Prüfintervalle nötig?
6. Wird eine regelmäßige vorbeugende Wartung durchgeführt?
 Der regelmäßige Austausch der Verschleißteile kann Fehlfunktionen vermeiden. So wird beispielsweise die Gefahr der Freisetzung von Biostoffen oder gefährlichen Gasen bei vorbeugender Wartung der Dichtungen an Fermentern oder Inkubatoren verringert.
7. Läuft das Gerät störungsfrei?
 Häufige Störungen oder Auffälligkeiten im Betrieb können zu einer Verkürzung der Prüfintervalle führen.

Werden eine oder mehrere Fragen mit „Nein“ beantwortet, müssen weitere Überlegungen angestellt werden. Als Maßnahme kommt beispielsweise in Frage, dass Prüffristen kürzer gesetzt werden müssen, wenn besondere Gefährdungen auftreten, die durch eine Prüfung vermieden werden können.
Anhang 6: Musterhygieneplan

Hygieneplan (Muster) nach Anhang III Gentechnik-Sicherheitsverordnung sowie im Sinne von §§ 9 und 14 Biostoffverordnung

Firma: …
Arbeitsbereich: …
Stand: …
Unterschrift: …

<table>
<thead>
<tr>
<th>WAS</th>
<th>WANN</th>
<th>WOMIT</th>
<th>WIE</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hygienische Händedesinfektion</td>
<td>nach dem Ausziehen der Schutzhandschuhe, nach jeder Kontamination, vor Verlassen des Labors</td>
<td>Präparat … mind. = 3 ml</td>
<td>Mehrmalige Betätigung der Ellenbogenbedienung, in die Hohlhand füllen und bis zur Trocknung einreiben</td>
<td>alle</td>
</tr>
<tr>
<td>Händereinigung: erst Desinfektion, dann Reinigung!</td>
<td>nach Verschmutzung, nach Arbeitsabschnitten</td>
<td>Präparat … Flüssigseife aus Spender</td>
<td>Hände unter Warmwasser waschen</td>
<td>alle</td>
</tr>
<tr>
<td>Hautpflege</td>
<td>nach jeder Desinfektion, bei Bedarf</td>
<td>Präparat … - Pflegelotion 1–2 Spenderhübe</td>
<td>nach Desinfektion und Reinigung in die getrockneten Hände einreiben</td>
<td>alle</td>
</tr>
<tr>
<td>Mikrobiologische Sicherheitswerkbanke (MSW)</td>
<td>nach Kontamination, nach Arbeitsabschnitten</td>
<td>Präparat …</td>
<td>bei laufender Lüftung Wischdesinfektion der Arbeitsfläche</td>
<td>jeder Nutzer, jede Nutzerin</td>
</tr>
<tr>
<td>Kontaminierte Arbeitsflächen, Oberflächen von Geräten etc.</td>
<td>nach offensichtlicher Kontamination, nach Arbeitsabschnitten, nach Bedarf</td>
<td>Präparat … - Spender</td>
<td>benetzen, mind. 5 min. einwirken lassen, wischen</td>
<td>jeder Nutzer, jede Nutzerin</td>
</tr>
<tr>
<td>Zentrifugen</td>
<td>nach Kontamination</td>
<td>Präparat … - Spender</td>
<td>benetzen, mind. 5 min. einwirken lassen, wischen</td>
<td>jeder Nutzer, jede Nutzerin</td>
</tr>
<tr>
<td>Kontaminierte Glaspipetten</td>
<td>nach Benutzung</td>
<td>Präparat … -%ige Lösung</td>
<td>im Pipettenspüler mind. über Nacht einwirken lassen</td>
<td>jeder Nutzer, jede Nutzerin</td>
</tr>
<tr>
<td>Kontaminierte Glasgeräte</td>
<td>nach Benutzung</td>
<td>Autoklav in Raum …</td>
<td>20 min. 121 °C</td>
<td>eingewiesenes Personal</td>
</tr>
<tr>
<td>Schutzkleidung</td>
<td>mind. 1 x im Monat oder nach Kontamination</td>
<td>Autoklav in Raum …</td>
<td>20 min. 121 °C</td>
<td>eingewiesenes Personal</td>
</tr>
<tr>
<td>Kontaminierte Abfälle, Petrischalen Einwegmaterialien</td>
<td>nach Bedarf</td>
<td>Autoklav in Raum …</td>
<td>20 min. 121 °C Autoklavierbeutel</td>
<td>eingewiesenes Personal</td>
</tr>
<tr>
<td>Kontaminierte Flüssigkeiten</td>
<td>bei Bedarf</td>
<td>Autoklav in Raum …</td>
<td>20 min. 121 °C</td>
<td>eingewiesenes Personal</td>
</tr>
<tr>
<td>Fußböden</td>
<td>wöchentlich</td>
<td>Präparat ..., Konzentration … % im Wischwasser</td>
<td>Reinigungsfirma, technische Assistenz, eingewiesenes Personal</td>
<td></td>
</tr>
</tbody>
</table>

Dieser Hygieneplan ist gegebenenfalls den jeweiligen laborspezifischen Anforderungen durch die verantwortliche Laborleitung/Projektleitung anzupassen.
Anhang 7: Musterplan für Hautschutz und Händedesinfektion

Hautschutzplan und Händedesinfektion (Muster)

<table>
<thead>
<tr>
<th>WAS</th>
<th>WANN</th>
<th>WOMIT</th>
<th>WIE</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hautschutz beim Tragen von flüssigkeitsdichten Handschuhen</td>
<td>vor dem Anziehen der Handschuhe</td>
<td>Hautschutzcreme Präparat:</td>
<td>einreiben</td>
<td>...</td>
</tr>
<tr>
<td>(z. B. aus Latex, Nitril)</td>
<td>Unterhandschuhe aus Baumwolle sind empfohlen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hautschutz beim Umgang mit wechselnden Gefahrstoffen</td>
<td>vor Beginn des Arbeitsvorgangs</td>
<td>Hautschutzcreme Präparat:</td>
<td>einreiben</td>
<td>...</td>
</tr>
<tr>
<td>Händedesinfektion</td>
<td>nach Beendigung der Tätigkeiten mit Bio-stoffen und grundsätzlich vor Verlassen des Labors</td>
<td>Präparat: Dosierung: Einwirkzeit:</td>
<td>einreiben</td>
<td>...</td>
</tr>
<tr>
<td>Hautreinigung</td>
<td>nach Händedesinfektion</td>
<td>Flüssigseife Präparat: Dosierung: Einwirkzeit:</td>
<td>waschen</td>
<td>...</td>
</tr>
<tr>
<td>Hautpflege</td>
<td>nach Händedesinfektion und -reinigung</td>
<td>Handpflegelotion Präparat: Dosierung:</td>
<td>einreiben</td>
<td>...</td>
</tr>
</tbody>
</table>

Detaillierte Informationen zum Hand- und Hautschutz enthält das Merkblatt A 023 „Hand- und Hautschutz“ der BG RCI.85

84 Positive Erfahrungen, insbesondere für Beschäftigte mit sensibler oder geschädigter Haut, bestehen auch mit Unterziehhandschuhen aus medizinischer Seide.

85 Zusätzlich sind im Downloadcenter der BG RCI unter downloadcenter.bgrci.de verschiedene Arbeitshilfen (Suchbegriff: A 023) sowie ein interaktiver Hand- und Hautschutzplan (Suchbegriff: Interaktiver Hand- und Hautschutzplan) hinterlegt.
Anhang 8: Hygieneschulung
(zu § 14 Abs. 1 Nr. 2 a Biostoffverordnung)

(Vorschlag zu typischen Lehrinhalten)

Einführung
Lernziele, Definitionen, Schwerpunkt Hygiene: Bedeutung der Hygiene im Beruf, Verknüpfung mit Arbeitsschutz und Qualitätsmanagement

Ökologie der Mikroorganismen
Vorkommen in Wasser, Boden, Luft, Besiedelung von Mensch und Tier, Mikrobiologie in Zahlen, Artenvielfalt, Risikogruppierung

Hygiene
Einschleppung von Mikroorganismen in den Betrieb, persönliche Hygiene, insbesondere Händehygiene, organisatorische Maßnahmen wie Hygiene- und Hautschutzplan, mikrobiologisches Monitoring, Grundregeln mikrobiologischer Technik, Verankerung von Hygienemaßnahmen in den Schutzstufen

Desinfektionsmittelklassen, Wirkstoffe
Aldehyde, Alkohole, Perverbindungen, Halogene u. v. a., Auswahlkriterien, Sicherheitsdatenblätter

Professionelle Vorgehensweise
Umgang mit Reinigungs-, Pflege- und Desinfektionsmitteln, Umgang mit Hilfsmitteln im Laborbereich, mit praktischen Beispielen, Beherrschung von Hygieneproblemzonen und potenziellen Keimreservoiren

Abwasser- und Abfallentsorgung
Sammeln, Autoklavieren, Funktions- und Erfolgskontrolle, Entsorgen

Persönliche Schutzausrüstungen

Gesetzliche und untergesetzliche Bestimmungen

Inner- und außerbetriebliche Informationsquellen (z. B. auch Betriebsanweisung)
Anhang 9: Musterbetriebsanweisung für Biostoffe

Schutzstufe 2

MUSTERBETRIEBSANWEISUNG

für Biostoffe

arbeitsbereichsbezogen nach § 14 Absatz 1 Biostoffverordnung

Stand: …

Unterschrift: …

GEFAHRENBEZEICHNUNG

Tätigkeiten mit Biostoffen der Risikogruppe 2

GEFAHREN FÜR MENSCHEN

- Biostoffe der Risikogruppe 2 (Viren, Bakterien, Pilze, Endoparasiten) können bei Einwirkung auf den menschlichen Körper Infektionen und Erkrankungen verursachen. Ein allergenes und toxisches Potenzial ist ebenfalls nicht auszuschließen.
- Die Aufnahme in den Körper kann durch Inhalation von Aerosolen, Verschlucken von Probenmaterial, Eindringen von Erregern in bestehende oder verletzungsbedingte Hautschäden oder beim Verspritzen der Probe über das Auge und die Schleimhäute erfolgen.
- Bei vielen Labortätigkeiten (z. B. Umfüllen, Ausplattieren, Anfertigen von Verdünnungsreihen, Pipettieren, Mischen, Vortexen) können Aerosole (unsichtbare, feinste schwebende Tröpfchen) entstehen. Infektionsgefahr besteht bei Inhalation dieser Aerosole oder Kontakt mit deren Niederschlag auf Oberflächen.

Schutzmaßnahmen und Verhaltensregeln

- Tätigkeiten mit Biostoffen der Risikogruppe 2 dürfen ausschließlich in Laboratorien der Schutzstufe 2 oder höher durchgeführt werden.
- Zutritt zum Labor haben nur Personen, die von der Laborleitung hierzu ermächtigt werden.
- Im Labor sind ein geschlossener Laborkittel, festes und geschlossenes Schuhwerk sowie Schutzbrille zu tragen. Die Schutzkleidung darf nur in den Arbeitsräumen getragen werden und ist beim Verlassen des Labors abzulegen. Verschmutzte Schutzkleidung ist für die desinfizierende Reinigung in dafür vorgesehenen und mit der Aufschrift „…“ gekennzeichneten Säcken zu sammeln.
- Beim Verlassen des Labors und nach jedem Hautkontakt mit erregerhaltigem Material sind die Hände zu desinfizieren und zu waschen. Danach ist eine Handpflege gemäß Hautschutzplan vorzunehmen.
- During des direkten Umgangs mit infektiösem Material müssen Einmalschutzhandschuhe (Typ: …) getragen werden. Schmierkontaminationen (z. B. an Telefonhörer, Türklinken, Armaturen, Schreibgeräten und Tastaturen) sind dabei zu vermeiden.
- Kontaminierte Arbeitsgeräte müssen vor einer Reinigung autoklaviert oder desinfiziert werden.
- Pathogene Biostoffe dürfen nur in gekennzeichneten, verschlossenen und gegen Bruch geschützten Behältern innerbetrieblich transportiert werden. Vor dem Verlassen des Labors sind deren Oberfläche zu desinfizieren.
- Im Labor nicht essen, rauchen, trinken, Kaugummi kauen oder Kosmetika auftragen.
- Mundpipettieren ist verboten. Zum Pipettieren ausschließlich Pipettierhilfe benutzen.
- Sauberkeit und Ordnung am Arbeitsplatz sind oberstes Gebot.
- Bei der Zentrifugation dicht schließende Zentrifugenröhrchen (Schraubverschluss mit O-Ring) verwenden.
- Flüssigkeiten mit Zellstoff aufsaugen. Zellstoff bzw. kontaminierten Bereich sofort mit Desinfektionsmittel ... einsprühen und gemäß Hygieneplan einwirken lassen. Anschließend ist eine Reinigung gemäß Hygieneplan durchzuführen.
- Fenster und Türen sind bis zum Abschluss der Reinigungsaktion geschlossen zu halten. Der Zutritt Unbefugter ist zu verhindern.
- Sämtliche kontaminierten Gegenstände (auch Laborkittel) sind in Entsorgungsbeutel zu sammeln und zu autoklavieren.

VERHALTEN IM GEFÄHRLFALL

Ruf Zentrale: …

Beim Freiwerden von Biostoffen der Risikogruppe 2 in großer Menge oder Konzentration (z. B. Verschüttungen, Bruch einer Kulturflasche) Beschäftigte warnen, Bereich ggf. ab sperren und sofort die Laborleitung informieren.

Flüssigkeiten mit Zellstoff aufsaugen. Zellstoff bzw. kontaminierten Bereich sofort mit Desinfektionsmittel ... einsprühen und gemäß Hygieneplan einwirken lassen. Anschließend ist eine Reinigung gemäß Hygieneplan durchzuführen.

Fenster und Türen sind bis zum Abschluss der Reinigungsaktion geschlossen zu halten. Der Zutritt Unbefugter ist zu verhindern.

Sämtliche kontaminierten Gegenstände (auch Laborkittel) sind in Entsorgungsbeutel zu sammeln und zu autoklavieren.
ERSTE HILFE

<table>
<thead>
<tr>
<th>Notruf 19222 oder 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Benetzte Kleidung (auch Unterkleidung) sofort ausziehen und erst nach desinfizierender Reinigung wieder verwenden.</td>
</tr>
<tr>
<td>• Offene Wunde ausspülen, möglichst ausbluten lassen und sofort mit Wund-Desinfektionsmittel einsprühen, Desinfektionsmittel ggf. nachdosieren und nach Vorschrift, mindestens jedoch 30 Minuten einwirken lassen.</td>
</tr>
<tr>
<td>• Bei Spritzer ins Auge mit der Augendusche intensiv spülen. Anschließend Augentropfen (Einmalphiole ...) einträufeln.</td>
</tr>
<tr>
<td>• Gelangt erregershaftiges Material in den Mund, sofort ausspucken und gründlich mit frisch angesetzter 1 %iger Wasserstoffperoxidlösung gurgeln.</td>
</tr>
<tr>
<td>• Verletzungen sind sofort dem/der zuständigen Vorgesetzten zu melden und in das Verbandbuch einzutragen.</td>
</tr>
<tr>
<td>• Bei intensivem Kontakt (z. B. Verschlucken, Einatmen, Inkorporation durch Verletzungen) Arzt/Ärztin aufsuchen.</td>
</tr>
</tbody>
</table>

SACHGERECHTE ENTSORGUNG

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kontaminierte Geräte und Instrumente gemäß Hygieneplan regelmäßig reinigen und desinfizieren, sterilisieren oder autoklavieren.</td>
</tr>
<tr>
<td>• Sämtliche kontaminierten Wegwerf-Abfälle in den gekennzeichneten Abfallbehältern (Inlinersack) sammeln und bei Bedarf, spätestens vor dem Wochenende autoklavieren. Die Entsorgung erfolgt danach über die Haustechnik (zuständig: Herr/Frau ... Tel. ...).</td>
</tr>
</tbody>
</table>

Die Musterbetriebsanweisung steht im Downloadcenter der BG RCI unter downloadcenter.bgrci.de (Suchbegriff: B 002) zum kostenfreien Download zur Verfügung.
Literaturverzeichnis

Verbindliche Rechtsnormen sind Gesetze, Verordnungen und der Normtext von Unfallverhütungsvorschriften. Abweichungen sind nur mit einer Genehmigung der zuständigen Behörde bzw. des zuständigen Unfallversicherungsträgers (z. B. Berufsgenossenschaft) erlaubt. Voraussetzung für die Erteilung einer Ausnahmegenehmigung ist, dass die Ersatzmaßnahme ein mindestens ebenso hohes Sicherheitsniveau gewährleistet.

Von Technischen Regeln zu Verordnungen, Durchführungsanweisungen von Unfallverhütungsvorschriften (DGUV Vorschriften) und DGUV Regeln kann abgewichen werden, wenn in der Gefährdungsbeurteilung dokumentiert ist, dass die gleiche Sicherheit auf andere Weise erreicht wird.

Keine verbindlichen Rechtsnormen sind DGUV Informationen, Merkblätter, DIN-/VDE-Normen. Sie gelten als wichtige Bewertungsmaßstäbe und Regeln der Technik, von denen abgewichen werden kann, wenn die gleiche Sicherheit auf andere Weise erreicht wird.

Fundstellen im Internet

Zahlreiche aktuelle Informationen bietet die Homepage der BG RCI unter www.bgrci.de/praevention und fachwissen.bgrci.de.

Detailinformationen zu Schriften und Medien der BG RCI sowie Bestellung siehe medienshop.bgrci.de

Ausgewählte Merkblätter, Anhänge und Vordrucke aus Merkblättern und DGUV Regeln sowie ergänzende Arbeitshilfen stehen im Downloadcenter Prävention unter downloadcenter.bgrci.de kostenfrei zur Verfügung.

Unfallverhütungsvorschriften, DGUV Regeln, DGUV Grundsätze und viele DGUV Informationen sind auf der Homepage der Deutschen Gesetzlichen Unfallversicherung (DGUV) unter publikationen.dguv.de zu finden.

1 Veröffentlichungen der Europäischen Union im Amtsblatt der Europäischen Union

Bezugsquellen: Bundesanzeiger Verlag, Postfach 10 05 34, 50445 Köln

2 Gesetze, Verordnungen, Technische Regeln

Bezugsquelle: Buchhandel
Freier Download unter www.gesetze-im-internet.de (Gesetze und Verordnungen) bzw. www.baua.de (Technische und Arbeitsmedizinische Regeln sowie Stellungnahmen)

Gesetz über den Verkehr mit Arzneimitteln (Arzneimittelgesetz – AMG)
Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedVV) mit zugehörigen Arbeitsmedizinischen Regeln, insbesondere:
AMR 2.1: Fristen für die Veranlassung/das Angebot arbeitsmedizinischer Vorsorge
AMR 6.1: Fristen für die Aufbewahrung ärztlicher Unterlagen
AMR 6.3: Vorsorgebescheinigung
AMR 6.4: Mitteilungen an den Arbeitgeber nach § 6 Absatz 4 ArbMedVV
AMR 6.5: Impfungen als Bestandteil der arbeitsmedizinischen Vorsorge bei Tätigkeiten mit biologischen Arbeitsstoffen
Arbeitsmedizinische Empfehlung (AME) „Wunschvorsorge“
Verordnung über Arbeitsstätten (Arbeitsstättenverordnung – ArbStättV) mit zugehörigen Technischen Regeln für Arbeitsstätten (ASR), insbesondere:
ASR V3: Gefährdungsbeurteilung
ASR A1.3: Sicherheits- und Gesundheitsschutzkennzeichnung
ASR A1.5/1,2: Fußböden
ASR A2.2: Maßnahmen gegen Brände
ASR A2.3: Fluchtwege und Notausgänge, Flucht- und Rettungsplan
ASR A3.6: Lüftung
ASR A1.7: Türen und Tore
Verordnung über Sicherheit und Gesundheitsschutz bei der Verwendung von Arbeitsmitteln (Betriebssicherheitsverordnung – BetrSichV) mit Technischen Regeln für Betriebssicherheit (TRBS), insbesondere:
TRBS 1203: Zur Prüfung befähigte Personen
Bekanntmachung des BMAS vom 09.04.2015: Interpretationspapier zum Thema „Wesentliche Veränderung von Maschinen“
Berufskrankheiten-Verordnung (BKV)
Gesetz zum Schutz vor gefährlichen Stoffen (Chemikaliengesetz – ChemG)
Verordnung über die Bestellung von Gefahrgutbeauftragten in Unternehmen (Gefahrgutbeauftragtenverordnung – GbV)
Verordnung zum Schutz vor Gefahrstoffen (Gefahrstoffverordnung – GefStoffV) mit Technischen Regeln für Gefahrstoffe (TRGS), insbesondere:
TRGS 401: Gefährdung durch Hautkontakt – Ermittlung, Beurteilung, Maßnahmen
TRBA/TRGS 406: Sensibilisierende Stoffe für Atemwege
TRGS 510: Lagerung von Gefahrstoffen in ortsbeweglichen Behältern
TRGS 513: Tätigkeiten an Sterilisatoren mit Ethylenoxid und Formaldehyd
TRGS 522: Raumsdesinfektion mit Formaldehyd
TRGS 525: Gefahrstoffe in Einrichtungen der medizinischen Versorgung
TRGS 526: Laboratorien
Verordnung über Sicherheit und Gesundheitsschutz bei Tätigkeiten mit Biologischen Arbeitsstoffen (Biostoffverordnung – BioStoffV) mit Technischen Regeln für Biologische Arbeitsstoffe (TRBA) sowie Beschlüssen des Ausschusses für Biologische Arbeitsstoffe (ABAS):
TRBA 100: Schutzmaßnahmen für Tätigkeiten mit biologischen Arbeitsstoffen in Laboratorien
TRBA 120: Versuchstierhaltung
TRBA 200: Anforderungen an die Fachkunde nach Biostoffverordnung
TRBA 240: Schutzmaßnahmen bei Tätigkeiten mit mikrobiell kontaminiertem Archivgut
TRBA 250: Biologische Arbeitsstoffe im Gesundheitswesen und in der Wohlfahrtspflege
TRBA 400: Handlungsanleitung zur Gefährdungsbeurteilung und für die Unterrichtung der Beschäftigten bei Tätigkeiten mit biologischen Arbeitsstoffen
TRBA/TRGS 406: Sensibilisierende Stoffe für die Atemwege
TRBA 450: Einstufungskriterien für Biologische Arbeitsstoffe
TRBA 460: Einstufung von Pilzen in Risikogruppen
TRBA 462: Einstufung von Viri in Risikogruppen
TRBA 464: Einstufung von Parasiten in Risikogruppen
TRBA 466: Einstufung von Bakterien (Bacteria) und Archaeabakterien (Archaea) in Risikogruppen
TRBA 468: Liste der Zelllinien und Tätigkeiten mit Zellkulturen
TRBA 500: Grundlegende Maßnahmen bei Tätigkeiten mit biologischen Arbeitsstoffen

Stellungnahmen der Projektgruppe Labortechnik (ELATEC) des Ausschusses für Biologische Arbeitsstoffe (ABAS):
Beschluss 603 des Ausschusses für Biologische Arbeitsstoffe (ABAS): Schutzmaßnahmen bei Tätigkeiten mit Transmissiblen Spongiformer Enzephalopathie (TSE) assoziierten Agenzien in TSE-Laboratorien
Beschluss 5/2013 des ABAS vom 22.04.2013: Technische Stellungnahme zum Thema „Rauchableitung aus Laboratorien der Schutz- und Sicherheitsstufen 1, 2 und 3“
Beschluss 14/2015 der ABAS vom 09.12.2015: Beschaffungsempfehlung für mikrobiologische Sicherheitswerkbanken der Klasse 1, 2, 3 und vergleichbare Arbeitsschutzeinrichtungen
Verordnung über Aufzeichnungen bei gentechnischen Arbeiten und bei Freisetzungen (Gentechnik-Aufzeichnungsverordnung – GenTAufzV)
Gesetz zur Regelung der Gentechnik (Gentechnikgesetz – GenTG)
Verordnung über die Sicherheitsstufen und Sicherheitsmaßnahmen bei gentechnischen Arbeiten in gentechnischen Anlagen (Gentechnik-Sicherheitsverordnung – GenTSV)
Verordnung über die Erstellung von außerbetrieblichen Notfallplänen und über Informations-, Melde- und Unterrichtungspflichten (Gentechnik-Notfallverordnung – GenTNotfV)
Gesetz über die Beförderung gefährlicher Güter (Gefahrgutbeförderungsgesetz – GGBeF)
Verordnung über die innerstaatliche und grenzüberschreitende Beförderung gefährlicher Güter auf der Straße, mit der Eisenbahn und auf Binnengewässern (Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt – GGVSSE)
Verordnung über die Beförderung gefährlicher Güter mit Seeschiffen (Gefahrgutverordnung See – GGVSee)
Gesetz zur Verhütung und Bekämpfung von Infektionskrankheiten beim Menschen (Infektionsschutzgesetz – IfSG)
Gesetz zum Schutze der arbeitenden Jugend (Jugendarbeitsschutzgesetz – JArbSchG)
Ausführungsgesetz zu Artikel 26 Abs. 2 des Grundgesetzes (Gesetz über die Kontrolle von Kriegswaffen – KrWaffKontrG)
Gesetz über Medizinprodukte (Medizinproduktegesetz – MPG)
Verordnung über das Errichten, Betreiben und Anwenden von Medizinprodukten (Medizinprodukte-Betreiberverordnung – MBetreibV)
Gesetz zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG)
Pflanzenbeschauerordnung (PflBeschauV)
Gesetz zum Schutz der Kulturpflanzen (Pflanzenschutzgesetz – PfSchG)

Gesetz über die Bereitstellung von Produkten auf dem Markt (Produktsicherheitsgesetz – ProdSG)

Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung – StrlSchV)

Gesetz über die Voraussetzungen und das Verfahren von Sicherheitsüberprüfungen des Bundes und den Schutz von Verschlusssachen (Sicherheitsüberprüfungsgesetz – SÜG)

Gesetz zur Vorbeugung vor und Bekämpfung von Tierseuchen (Tiergesundheitsgesetz – TierGesG)

Verordnung über das Arbeiten mit Tierseuchenerregern (Tierseuchenerreger-Verordnung – TierSeuchErV)

Verordnung über das innergemeinschaftliche Verbringen und die Einfuhr von Tierseuchenerregern (Tierseuchenerreger-Einfuhrverordnung – TierSeuchErEinfV)

3 Unfallverhütungsvorschriften (DGUV Vorschriften), DGUV Regeln, DGUV Grundsätze, DGUV Informationen, Merkblätter und sonstige Schriften der Unfallversicherungsträger

Bezugsquellen: Berufsgenossenschaft Rohstoffe und chemische Industrie, Postfach 10 14 80, 69004 Heidelberg, medienshop.bgrci.de oder Jedermann-Verlag GmbH, Postfach 10 31 40, 69021 Heidelberg, www.jedermann.de, verkauf@jedermann.de

Mitgliedsbetriebe der BG RCI können die folgenden Schriften (bis zur nächsten Bezugsquellenangabe) in einer der Betriebsgröße angemessenen Anzahl kostenlos beziehen.

DGUV Vorschrift 1: Grundsätze der Prävention
DGUV Regel 100-001: Grundsätze der Prävention
DGUV Regel 100-500: Betreiben von Arbeitsmitteln
DGUV Regel 112-190: Benutzung von Atmenschutzgeräten
DGUV Information 205-001: Arbeitssicherheit durch vorbeugenden Brandschutz (Neuauflage mit neuem Titel in Vorbereitung: „Betrieblicher Brandschutz in der Praxis“)
DGUV Information 205-006: Arbeiten in sauerstoffreduzierter Atmosphäre
DGUV Information 213-850: Sicheres Arbeiten in Laboratorien – Grundlagen und Handlungshilfen
Merkblatt A 002: Gefahrgrutbeauftragte (DGUV Information 213-050)
Merkblatt A 013: Beförderung gefährlicher Güter (DGUV Information 213-052)
Merkblatt A 014: Gefahrgrutbeförderung in Pkw und in Kleintransportern (DGUV Information 213-012)
Merkblatt A 016: Gefährdungsbeurteilung – Sieben Schritte zum Ziel
Merkblatt A 017: Gefährdungsbeurteilung – Gefährdungskatalog
Merkblatt A 023: Hand- und Hautschutz
Merkblatt A 027: Mutterschutz im Betrieb
Merkblatt B 001: Fachbegriffe
Merkblatt B 003: Ausstattung und organisatorische Maßnahmen: Betrieb (DGUV Information 213-087)
Merkblatt B 004: Einstufung biologischer Arbeitsstoffe: Viren (DGUV Information 213-088)
Merkblatt B 005: Einstufung biologischer Arbeitsstoffe: Parasiten – Besondere Schutzmaßnahmen bei Tätigkeiten mit Parasiten (DGUV Information 213-089)
Merkblatt B 006: Einstufung biologischer Arbeitsstoffe: Prokaryonten (Bacteria und Archaea) (DGUV Information 213-090)
Merkblatt B 006-1: Einstufung biologischer Arbeitsstoffe: Prokaryonten (Bacteria und Archaea) – Ergänzungsliste (DGUV Information 213-091)
Merkblatt B 007: Einstufung biologischer Arbeitsstoffe: Pilze (DGUV Information 213-092)
Merkblatt B 009: Einstufung biologischer Arbeitsstoffe: Zellkulturen (DGUV Information 213-093)
Merkblatt B 011: Sicheres Arbeiten an mikrobiologischen Sicherheitswerkbanken
Kleinbroschüre B 011-1: Mikrobiologische Sicherheitswerkbanken
Merkblatt M 053-1: Stickstoff – Arbeitsschutzinformationen für Beschäftigte
Merkblatt T 021: Gaswarn einrichtungen und -geräte für toxische Gase/Dämpfe und Sauerstoff – Einsatz und Betrieb (DGUV Information 213-056)
Merkblatt T 032: Laborabzüge – Bauarten und sicherer Betrieb (DGUV Information 213-857)

Bezugsquelle: Deutsche Gesetzliche Unfallversicherung e. V., Glinkastraße 40, 10117 Berlin-Mitte
Freier Download unter http://publikationen.dguv.de

DGUV Regel 107-002: Desinfektionsarbeiten im Gesundheitsdienst
DGUV Regel 109-002: Arbeitsplatzlüftung – Lufttechnische Maßnahmen
DGUV Information 207-206: Prävention chemischer Risiken beim Umgang mit Desinfektionsmitteln im Gesundheitswesen
DGUV Information 211-005: Unterweisung – Bestandteil des betrieblichen Arbeitsschutzes
DGUV Information 212-139: Notrufmöglichkeiten für allein arbeitende Personen
DGUV Information 213-016: Betriebsanweisungen nach der Biostoffverordnung
DGUV Grundsatz 313-003: Grundanforderungen an spezifische Fortbildungsmaßnahmen als Bestandteil der Fachkunde zur Durchführung der Gefährdungsbeurteilung bei Tätigkeiten mit Gefahrstoffen
Liste der krebszerzeugenden, keimzellmutagenen und reproduktionstoxischen Stoffe (KMR-Liste) des Instituts für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) (Stand: Oktober 2018)
Freier Download unter www.dguv.de/ifa/fachinfos/kmr-liste/index.jsp
Homepage des Sachgebiets „Betrieblicher Brandschutz“ aus dem Fachbereich „Feuerwehren, Hilfeleistungen, Brandschutz“ der DGUV mit aktuellen Informationen zum Thema
Freier Zugriff unter www.dguv.de/de/praevention/fachbereiche_dguv/fhb/brandschutz/index.jsp

G 23: Obstruktive Atemwegserkrankungen
G 24: Hauterkrankungen (mit Ausnahme von Hautkrebs)
G 42: Tätigkeiten mit Infektionsgefährdung

Bezugsquelle: Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtpflege (BGW), Pappelallee 33/35/37, 22089 Hamburg, www.bgw-online.de
Broschüre BHW Themen M620: Zytostatika im Gesundheitsdienst – Informationen zur sicheren Handhabung (Bestell-Nr. BGW 09-19-042)
Broschüre BHW Forschung: Arzneistoffe mit Verdacht auf sensibilisierende und CMR-Eigenschaften – Hilfestellung zu ihrer Identifikation im Rahmen einer (Bestell-Nr. BGW 09-19-001)

Bezugsquelle: Verwaltungs-Berufsgenossenschaft (VBG), Massaquoipassage 1, 22305 Hamburg, www.vbg.de
VBG-Fachwissen: Zwischenfall, Notfall, Katastrophe – Leitfaden für die Sicherheits- und Notfallorganisation

4 DIN/EN-Normen und VDE-Bestimmungen

DIN 1946-7:2009-07, Raumlufttechnik – Teil 7: Raumlufttechnische Anlagen in Laboratorien
DIN 4102 Teil 1 bis 22, Brandverhalten von Baustoffen und Bauteilen
DIN 12980:2017-05, Laboreinrichtungen – Sicherheitswerkbänke und Isolatoren für Zytostatika und sonstige CMR-Arzneimittel
DIN 14095:2007-05, Feuerwehrpläne für bauliche Anlagen
DIN 14096:2014-05, Brandschutzordnung – Regeln für das Erstellen und das Aushängen
DIN 14675:2012-04, Brandmeldeanlagen – Aufbau und Betrieb
DIN EN 12469:2000-09, Biotechnik – Leistungskriterien für mikrobiologische Sicherheitswerkbänke; Deutsche Fassung EN 12469:2000
DIN EN 14175-1:2003-08, Abzüge – Teil 1: Begriffe; Deutsche Fassung EN 14175-1:2003
Literaturverzeichnis

DIN EN 14175-4:2004-12, Abzüge – Teil 4: Vor-Ort-Prüfverfahren; Deutsche Fassung EN 14175-4:2004
DIN EN 14175-6:2006-08, Abzüge mit variablem Luftstrom; Deutsche Fassung EN 14175-6:2006
DIN EN 14470 ff., Feuerwiderstandsähnliche Lagerschränke
ISO 35001:2019-11; Biorisk management for laboratories and other related organisations

5 Andere Schriften und Medien

Bezugsquelle: Buchhandel, Verlag oder ggf. bei der herausgebenden Institution, Gesellschaft oder Organisation

DGUV Information 213-086 12/2019
129/136

Regelungen für die Beförderung von gefährlichen Stoffen und Gegenständen – Teil 1: BRIEF national (gültig ab 01.07.2013), A: Briefsendungen; Versandvorschriften und Hinweise für Einlieferer ansteckunggefährlicher Inhalte
Regelungen für die Beförderung von gefährlichen Stoffen und Gegenständen – Teil 1: BRIEF national (gültig ab 01.07.2013), B: briefähnliche Sendungen; Versandvorschriften und Hinweise für Einlieferer gefährlicher Stoffe und Gegenstände (Gefahrgut)
Regelungen für die Beförderung von gefährlichen Stoffen und Gegenständen – Teil 2: DHL PAKET national (gültig ab 01.07.2017)

Deutsche Veterinärmedizinische Gesellschaft e.V. (DVG), www.dvg.net
DVG-Desinfektionsmittelliste für den Tierhaltungsbereich (tagaktuell)
Download: www.desinfektion-dvg.de → DVG-Desinfektionsmittellisten (Datenbankabfrage)
DVG-Desinfektionsmittelliste für den Lebensmittelbereich
Download: www.desinfektion-dvg.de → DVG-Desinfektionsmittellisten (Datenbankabfrage)
DVG-Prüfrichtlinien
Download: www.desinfektion-dvg.de → Infos für Hersteller und Gutachter → Prüfrichtlinien

United States Department of Agriculture Research, Education, and Economics (USDA)
Download: www.afm.ars.usda.gov/ppweb/pdf/242-01m.pdf

Health and Safety Executive (HSE), www.hse.gov.uk
Biological agents – The principles, design and operation of Containment Level 4 facilities. Advisory Committee on Dangerous Pathogens, 05/06
Download: www.hse.gov.uk/pubns/web09.pdf

International Air Transport Association (IATA), www.iata.org
International Air Transport Association – Dangerous Goods Regulations (IATA-DGR)
IATA DGR Gefahrgutvorschriften für den Luftverkehr 60. Auflage 2019
International Civil Aviation Organization – Technical instructions for the safe transport of dangerous goods by air (ICAO-TI)
Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße/Accord européen relatif au transport international des marchandises dangereuses par route (ADR)
Regelung zur Ordnung für die internationale Eisenbahnbeförderung gefährlicher Güter/Règlement concernant le transport internationale ferroviaire des marchandises dangereuses (RID)
Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf Binnenwasserstraßen/Accord européen relatif au transport international des marchandises dangereuses par voie de navigation intérieure (ADN)

Robert Koch-Institut, www.rki.de
Bundesgesundheitsblatt 2017, 60:1274–1297
Download: www.rki.de → Infektionsschutz → Infektions- und Krankenhaushygiene → Desinfektion
Impfempfehlungen der Ständigen Impfkommission (STIKO)
Download: www.rki.de → Kommissionen → Ständige Impfkommission → Empfehlungen der STIKO
Gesamtliste der Nationalen Referenzzentren und Konsiliarlabore
Download: www.rki.de → Infektionsschutz → NRZ und Konsiliarlabore

UN Economic Commission for Europe (UNECE), www.unece.org
Universal Postal Union (UPU), www.upu.int

U.S. Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), www.cdc.gov
Appendix F5 – Laboratory biosafety guidelines for handling and processing specimens associated with SARS-CoV
Download: www.selectagents.gov/SelectAgentsandToxinsList.html

U.S. Pharmacopoeia Convention (USP), www.usp.org
Pharmacists’ Pharmacopeia (2007)
Chapter <1116>: Microbiological evaluation of clean rooms and other controlled environments, ISBN: 978-3-7692-3891-4

Verbund für Angewandte Hygiene e. V. (VAH), www.vah-online.de
Desinfektionsmittel-Liste des VAH
ISBN: 978-3-88681-134-2

Vereinigung zur Förderung des Deutschen Brandschutzes e.V. (vfdb), www.vfdb.de
vfdb-Richtlinie 10-02: Feuerwehr im Bio-Einsatz (Stand: Dezember 2002)

World Health Organization (WHO), www.who.int
Guidance on regulations for the transport of infectious substances 2009 – 2010
World Health Organization (2008)
WHO biosafety guidelines for handling of SARS specimens
Biorisk management – Laboratory biosecurity guidance (September 2006)

Zentrale Kommission für die Biologische Sicherheit (ZKBS), www.zkbs-online.de
Im Internet: www.bvl.bund.de unter Gentechnik → Zentrale Kommission für die Biologische Sicherheit → Organismenliste
Allgemeine Stellungnahmen der ZKBS
Im Internet: www.bvl.bund.de unter Gentechnik → Zentrale Kommission für die Biologische Sicherheit → Allgemeine Stellungnahmen der ZKBS

Australia Group, www.australiagroup.net
List of Human and Animal Pathogens and Toxins for Export Control
Download: www.australiagroup.net/en/human_animal_pathogens.html
(Stand: Juli 2017)
6 Datenbanken

Bildnachweis

Die in dieser Schrift verwendeten Bilder dienen nur der Veranschaulichung. Eine Produktempfehlung seitens der BG RCI wird damit ausdrücklich nicht beabsichtigt.

Abbildungen wurden freundlicherweise zur Verfügung gestellt von:

Titelbild, Abbildungen 1, 8, 26, 30, 32, 37 und 53: Julia Sehl
Friedrich-Loeffler-Institut
Südufer 10
17493 Greifswald – Insel Riems

Abbildung 2:
Jan Schinköthe
Friedrich-Loeffler-Institut
Südufer 10
17493 Greifswald – Insel Riems

Abbildungen 3, 4, 29, 40 und 56:
Thomas Hinrichs
Berner International GmbH
Werner-von-Siemens-Straße 19
25337 Elmshorn

Abbildungen 5, 7, 16, 22, 24, 25, 33, 38, 39, 45 und 48:
BG RCI

Abbildungen 6 und 34:
Dr. Joachim Kremerskothen
Westfälische-Wilhelms-Universität Münster
Schlossplatz 2
48149 Münster

Abbildungen 9 und 14:
Dr. Christian Spielhaupter
Roche Diagnostics GmbH
Nonnenwald 2
82377 Penzberg

Abbildung 10:
Patrick Zitzow
Friedrich-Loeffler-Institut
Südufer 10
17493 Greifswald – Insel Riems

Abbildungen 11, 21, 27 und 28:
Dr. Ute Pfitzner
Paul-Ehrlich-Institut
Bundesinstitut für Impfstoffe
und biomedizinische Arzneimittel
Paul-Ehrlich-Straße 51–59
63225 Langen

Abbildungen 12, 15, 36, 46 und 47:
Dr. Helmut Rausch
MorphoSys AG
Semmelweisstraße 7
82152 Planegg

Abbildung 13:
Sartorius Stedim Biotech GmbH
August-Spindler-Straße 11
37079 Göttingen

Abbildungen 17, 18, 19 und 52:
Sven Krage
MMM Group
Semmelweisstraße 6
82152 Planegg/München

Abbildungen 20 und 23:
aus der Norm DIN EN ISO 7010/A7:2017-08
Beuth Verlag GmbH
Saatwinkler Damm 42/43
13627 Berlin

Abbildung 31:
aus der Norm DIN EN ISO 374-5
Beuth Verlag GmbH
Saatwinkler Damm 42/43
13627 Berlin

Abbildung 35:
Medigene AG
Lochhamer Straße 11
82152 Planegg/Martinsried

Abbildung 41:
Dr. Fabian Deutskens
IDT Biologika (Riems) GmbH & Co. KG
An der Wiek 7
17493 Greifswald

Abbildung 42:
Scanbur A/S
Silovej 16–18
2690 Karshiunde – Denmark
Abbildungen 43 und 55:
Hans-Jürgen Ulrich
MLT Medizin- und Labortechnik
Werrastraße 3
60486 Frankfurt am Main

Abbildung 44:
Dr. Ruth Knorr
Medizinische Hochschule Hannover (MHH)
Biologische Sicherheit
Carl-Neuberg-Straße 1
30625 Hannover

Abbildungen 49, 51 und 54:
Robert Koch-Institut, Berlin

Abbildung 50:
Prof. Dr. Jens Peter Teifke
Friedrich-Loeffler-Institut
Südufer 10
17493 Greifswald – Insel Riems