Wärmeschutz und Energie-Einsparung in Gebäuden –
Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte,
Änderung A1

Thermal insulation and energy economy in buildings –
Part 4: Hygrothermal design values, Amendment A1

Isolation thermique et économie d’énergie en bâtiments immeuble –
Partie 4: Valeurs de calcul hygrothermiques, Amendement A1
Vorwort

In diesem Sinne fließen die Regelungen für den Wärmeschutz nach DIN EN 998-1:2003-09 in diese Änderung mit ein.

Es ist zu erwarten, dass Ende 2006 weitere Europäische Normen vorliegen werden, die weitere notwendige Änderungen in der DIN V 4108-4 zur Folge haben.

Eine Vornorm ist das Ergebnis einer Normungsarbeit, das wegen bestehender Vorbehalte zum Inhalt oder wegen des gegenüber einer Norm abweichenden Aufstellungsverfahrens vom DIN noch nicht als Norm herausgegeben wird.

Zur vorliegenden Vornorm wurde kein Entwurf veröffentlicht.

Erfahrungen mit dieser Vornorm sind erbeten

— vorzugsweise als Datei per E-Mail an nabau@din.de in Form einer Tabelle. Die Vorlage dieser Tabelle kann im Internet unter http://www.din.de/Stellungnahmen abgerufen werden;

— oder in Papierform an den Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e. V., 10772 Berlin (Hausanschrift: Burggrafenstr. 6, 10787 Berlin).
Änderungen gegenüber DIN V 4108-4:2004-07

1 Zu Tabelle 2:

a) Die Bemessungswerte bei expandiertem Kork (ICB) und Holzfaserdämmstoff (WF) in Tabelle 2 beinhalten einen Feuchtezuschlag. Zusätzlich wird die Fußnote b geändert von \(\lambda = \lambda_0 \cdot 1,2 \) (außer für Zeilen 5.9 und 5.10, dort ist zusätzlich die Umrechnung der Feuchte hinzuzurechnen)\(^a\) auf \(\lambda = \lambda_0 \cdot 1,23 \) (in den Zeilen 5.9 und 5.10, ist die Umrechnung der Feuchte bereits realisiert; in der Zeile 5.9 ist die Umrechnung \(\lambda = \lambda_0 \cdot 1,23 \) und \(\lambda = \lambda_{\text{grenz}} \cdot 1,1 \) sowie in der Zeile 5.10 \(\lambda = \lambda_0 \cdot 1,23 \) und \(\lambda = \lambda_{\text{grenz}} \cdot 1,07 \)).

| Zeile | Stoff | Kategorie I | | Kategorie II | | Richtwert der Wasser dampfdiffusionswiderstands Zahl \(\mu \) |
|-------|-------|-------------|-----------------|-----------------|-----------------|
| | | Nennwert | Bemessungs- | Grenzwert | Bemessungs- | |
| | | \(\lambda_0 \) | Wert \(\lambda^b \) | \(\lambda_{\text{grenz}} \) | Wert \(\lambda^b \) | |
| 5.9 | Expandierter Kork (ICB) nach DIN EN 13170 | 0,040 | 0,049 | 0,0368 | 0,040 | 5/10 |
| | | 0,041 | 0,050 | 0,0377 | 0,041 |
| | | 0,042 | 0,052 | 0,0386 | 0,042 |
| | | 0,043 | 0,053 | 0,0395 | 0,043 |
| | | 0,044 | 0,054 | 0,0404 | 0,044 |
| | | 0,045 | 0,055 | 0,0413 | 0,045 |
| | | 0,055 | 0,067 | 0,0504 | 0,055 |
| 5.10 | Holzfaserdämmstoff (WF) nach DIN EN 13171 | 0,032 | 0,039 | 0,0303 | 0,032 | 5 |
| | | 0,033 | 0,040 | 0,0312 | 0,033 |
| | | 0,034 | 0,042 | 0,0322 | 0,034 |
| | | 0,035 | 0,043 | 0,0331 | 0,035 |
| | | 0,036 | 0,044 | 0,0340 | 0,036 |
| | | 0,037 | 0,045 | 0,0350 | 0,037 |
| | | 0,038 | 0,046 | 0,0359 | 0,038 |
| | | 0,039 | 0,048 | 0,0368 | 0,039 |
| | | 0,040 | 0,049 | 0,0378 | 0,040 |
| | | 0,060 | 0,073 | 0,0565 | 0,060 |

a	Es ist jeweils der für die Baukonstruktion ungünstigere Wert einzusetzen. Bezüglich der Anwendung der \(\mu \)-Werte siehe DIN 4108-3.
b	\(\lambda = \lambda_0 \cdot 1,2 \) (in den Zeilen 5.9 und 5.10, ist die Umrechnung der Feuchte bereits realisiert; in der Zeile 5.9 ist die Umrechnung \(\lambda = \lambda_0 \cdot 1,23 \) und \(\lambda = \lambda_{\text{grenz}} \cdot 1,1 \) sowie in der Zeile 5.10 \(\lambda = \lambda_0 \cdot 1,23 \) und \(\lambda = \lambda_{\text{grenz}} \cdot 1,07 \)).
c	Der Wert \(\lambda_{\text{grenz}} \) ist im Rahmen der technischen Spezifikationen des jeweiligen Dämmstoffs festzulegen.
b) Die in 4.1 angegebene Tabelle 2 wird um den Stoff „Wärmemantelputz nach DIN EN 998-1 der Kategorie T1 bzw. T2“ ergänzt:

Tabelle 2 — Zelle 5 von Tabelle 1 für Wärmedämmschichten nach harmonisierten Europäischen Normen

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Stoff</th>
<th>Kategorie I</th>
<th>Grenzwert</th>
<th>Kategorie II</th>
<th>Bemessungswert</th>
<th>Bemessungswert</th>
<th>Richtwert der Wasserdampfdiffusionswiderstandszahl a</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>Wärmemantelputz nach DIN EN 998-1 der Kategorie</td>
<td>0,120</td>
<td>0,057</td>
<td>0,060</td>
<td>0,066</td>
<td>0,070</td>
<td>0,075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,075</td>
<td>0,080</td>
<td>0,085</td>
<td>0,090</td>
<td>0,094</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td>0,120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td>0,113</td>
<td>0,120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td>0,132</td>
<td>0,140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td>0,150</td>
<td>0,160</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Es ist jeweils der für die Baukonstruktion ungünstigere Wert einzusetzen. Bezüglich der Anwendung der μ-Werte siehe DIN 4108-3.

b) Der Wert \(\lambda_{\text{gr}} \) ist im Rahmen der technischen Spezifikationen des jeweiligen Dämmstoffs festzulegen.

d) \(\lambda = \lambda_{\text{gr}} \cdot 1,05 \)

2 Zu Tabelle 4:

3 Zu Tabelle 6:

In 4.3 Tabelle 6 wird für Holzfaserplatten ein Zuschlagswert von 0,15 aufgenommen. Weiterhin ist die Bezeichnung der pflanzlichen Faserdämmstoffe neu. Holzfaserplatten nach DIN EN 622 sind zusätzlich aufgenommen worden.

<table>
<thead>
<tr>
<th>Zelle</th>
<th>Stoffe</th>
<th>Zuschlagswert Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>anorganische Stoffe in loser Schüttung</td>
<td>0,05</td>
</tr>
<tr>
<td>1.1</td>
<td>expandiertes Gesteinsglas (z. B. Blähperlit)</td>
<td>0,05</td>
</tr>
<tr>
<td>1.2</td>
<td>sonstige anorganische Stoffe</td>
<td>0,05</td>
</tr>
<tr>
<td>3</td>
<td>pflanzliche Faserdämmstoffe</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Kokosfasern</td>
<td>0,10</td>
</tr>
<tr>
<td>3.2</td>
<td>sonstige pflanzliche Fasern</td>
<td>0,20</td>
</tr>
<tr>
<td>4</td>
<td>synthetische Faserdämmstoffe</td>
<td>0,20</td>
</tr>
<tr>
<td>6</td>
<td>Holzfaserplatten nach DIN EN 622</td>
<td>0,15</td>
</tr>
<tr>
<td>7</td>
<td>Hamstoff-Formaldehydharz (UF)-Ortschaum nach DIN 18159-2</td>
<td>0,10</td>
</tr>
</tbody>
</table>

4 Neuer Abschnitt 7

Zusätzlich aufgenommen wird ein Abschnitt zu Toren, zur Angabe der Bemessungswerte nach DIN EN 13241:

7 Bemessungswerte für Tore

Der Nennwert des Wärmedurchgangskoeffizienten U_D wird nach DIN EN 13241 ermittelt und mit dem CE-Zeichen angegeben.

Der Bemessungswert $U_{D,BW}$ des Wärmedurchgangskoeffizienten ist nach Gleichung (4) zu ermitteln:

$$ U_{D,BW} = U_D $$ \hspace{1cm} (4)

Ist für den Nennwert des Wärmedurchgangskoeffizienten U_D kein Nachweis vorhanden, dürfen für den Anwendungsbereich der DIN V 4108-4 pauschal folgende Bemessungswerte $U_{D,BW}$ verwendet werden:
| Toraufbau
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tore mit einem Torblatt aus Metall (einschalig, ohne wärmetechnische Trennung)</td>
</tr>
<tr>
<td>mit einem Torblatt aus metall- oder holzbeplankten Paneelen aus Dämmstoffen ($\lambda \leq 0,04$ $\text{W/(m} \cdot \text{K)}$) bzw. $R_D \geq 0,5$ ($\text{m}^2 \cdot \text{K}/\text{W}$ bei 15 mm Schichtdicke)</td>
</tr>
<tr>
<td>Tore mit einem Torblatt aus Holz und Holzwerkstoffen, Dicke der Torfüllung ≥ 15 mm</td>
</tr>
<tr>
<td>mit einem Torblatt aus Holz und Holzwerkstoffen, Dicke der Torfüllung ≥ 25 mm</td>
</tr>
</tbody>
</table>

ANMERKUNG Die in Tabelle 15 angegebenen Werte können nicht für die Deklaration des U_D-Wertes im Rahmen des CE-Nachweises nach DIN EN 13241 verwendet werden.

5 Neuer Abschnitt 8

Zusätzlich aufgenommen wird ein Abschnitt zur Berechnung von Dämmstoffdicken bei Rohrleitungen:

8 Berechnung von Dämmstoffdicken bei Rohrleitungen
<table>
<thead>
<tr>
<th>DN</th>
<th>Nennweite</th>
<th>Rohr-</th>
<th>Rohrinnen-</th>
<th>Stahlrohre Fe</th>
<th>Mindestdikke</th>
<th>Mindestdicke der Dämmschicht in mm</th>
<th>Wärmedurchgängigkeit (W/m² - K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>außen-</td>
<td>durch-</td>
<td>Nennweite</td>
<td>nach DIN EN 10055 (mittlere Reihe)</td>
<td>bezogen auf eine Wärmeleitfähigkeit von</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>durch-</td>
<td>messer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20a</td>
<td>22</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>35</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>54</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>76</td>
<td>72,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>89</td>
<td>84,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100b</td>
<td>108b,c</td>
<td>103b,c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANMERKUNG Wenn Zwischenwerte als Nennwerte produktionsbedingt bestehen sind die in der Tabelle 16 genannnten Mindestdämmstoffdicken linear zu interpretieren und auf ganze Millimeter aufzurunden.

a Wärmeübergangskoeffizient innen: nicht berücksichtigt; Wärmeübergangskoeffizient außen: 10 W/(m² - K).

b Errechnete Werte.

c Nicht in E DIN EN 1057 enthalten.